Metal complexes in medicine and pharmacy – the past and the present II
Authors:
Ladislav Habala; Jindra Valentová
Published in the journal:
Čes. slov. Farm., 2020; 69, 3-16
Category:
Přehledy a odborná sdělení
Summary
Therapy of malignant tumors is among the oldest and at the same time the most promising application areas of therapeutic metal complexes. The second part of our survey on metallopharmaceuticals deals with historical development and current state of coordination compounds in cancer therapy. It starts with the most famous and most successful metallodrug – cisplatin. After a brief account of the discovery of the anticancer properties of this substance follows the discussion of its chemical properties, toxicity, clinical application and resistance. Hereafter, complexes of other metals along with innovative research directions are addressed. The aim of this brief survey is to provide basic overview of the area of metallopharmacy, aimed at specialists in pharmacy and chemistry as well as at the general educated public.
Keywords:
bioinorganic chemistry – metallopharmaceuticals – metal complexes – Chemotherapy – platinum – ruthenium
Zdroje
1. Habala L., Valentová J. Komplexy kovov v medicíne a farmácii – minulosť a súčasnosť I. Čes. slov. Farm. 2018; 67, 182–191.
2. DeVita V. T., Chu E. A history of cancer chemotherapy. Cancer Res. 2008; 68, 8643‒8653.
3. Papac R. J. Origins of cancer therapy. Yale J. Biol. Med. 2001; 74, 391‒398.
4. Hajdu S. I. 2000 years of chemotherapy of tumors. Cancer 2005; 103, 1097‒1102.
5. Morrison W. B. Cancer chemotherapy: An annotated history. J. Vet. Intern. Med. 2010; 24, 1249‒1262.
6. Gilman A. The initial clinical trial of nitrogen mustard. Am. J. Surg. 1963; 105, 574‒578.
7. Humphrey R. W., Brockway-Lunardi L. M., Bonk D. T., Dohoney K. M., Doroshow J. H., Meech S. J., Ratain M. J., Topalian S. L., Pardoll D. M. Opportunities and challenges in the development of experimental drug combinations for cancer. J. Natl. Cancer Inst. 2011; 103, 1222‒1226.
8. Oktábec Z., Jampílek J. Stručná historie chemoterapie. Chem. Listy 2013; 107, 151‒159.
9. Ghosh S. Cisplatin: The first metal based anticancer drug. Bioorg. Chem. 2019; 88, 102925.
10. Lippert B. Cisplatin: Chemistry and biochemistry of a leading anticancer drug. Zürich: Verlag Helvetica Chimica Acta 1999.
11. Peyron M. Ueber die Einwirkung des Ammoniaks auf Platinchlorür. Ann. Chem. Pharm. 1844; 51, 1‒29.
12. Barry N. P. E., Sadler P. J. 100 years of metal coordination chemistry: from Alfred Werner to anticancer metallodrugs. Pure Appl. Chem. 2014; 86, 1897‒1910.
13. Muggia F. M., Bonetti A., Hoeschele J. D., Rozencweig M., Howell S. B. Platinum antitumor complexes: 50 years since Barnett Rosenberg’s discovery. J. Clin. Oncol. 2015; 33, 4219‒4226.
14. Grimley E. Discovery and identification of the first platinum anticancer compound. Inorg. Chim. Acta 2019; 495, 118986.
15. Wilson J. J., Lippard S. J. Synthetic methods for the preparation of platinum anticancer complexes. Chem. Rev. 2014; 114, 4470–4495.
16. Motzer R. J. Optimal treatment for advanced seminoma? Cancer 1993; 72, 3–4.
17. Marloye M., Berger G., Gelbcke M., Dufrasne F. A survey of the mechanisms of action of anticancer transition metal complexes. Future Med. Chem. 2016; 8, 2263–2286.
18. Wexselblatt E., Yavin E., Gibson D. Cellular interactions of platinum drugs. Inorg. Chim. Acta 2012; 393, 75–83.
19. Arnesano F., Losacco M., Natile G. An updated view of cisplatin transport. Eur. J. Inorg. Chem. 2013; 2013, 2701–2711.
20. Arnesano F., Nardella M. I., Natile G. Platinum drugs, copper transporters and copper chelators. Coord. Chem. Rev. 2018; 374, 254–260.
21. Yu J. J. Unlocking the molecular mechanisms of DNA repair and platinum drug resistance in cancer chemotherapy. Curr. Drug Ther. 2009; 4, 19–28.
22. Bergamo A., Dyson P. J., Sava G. The mechanism of tumour cell death by metal-based anticancer drugs is not only a matter of DNA interactions. Coord. Chem. Rev. 2018; 360, 17–33.
23. Wang X., Guo Z. The role of sulfur in platinum anticancer chemotherapy. Anti-Cancer Agents Med. Chem. 2007; 7, 19–34.
24. Galluzzi L., Senovilla L., Vitale I., Michels J., Martins I., Kepp O., Castedo M., Kroemer G. Molecular mechanisms of cisplatin resistance. Oncogene 2012; 31, 1869–1883.
25. Florea A.-M., Büsselberg D. Cisplatin as an anti-tumor drug: cellular mechanisms of activity, drug resistance and induced side effects. Cancers 2011; 3, 1351–1371.
26. Dilruba S., Kalayda G. V. Platinum-based drugs: past, present and future. Cancer Chemother. Pharmacol. 2016; 77, 1103–1124.
27. Di Pasqua A. J., Goodisman J., Dabrowiak J. C. Understanding how the platinum anticancer drug carboplatin works: From the bottle to the cell. Inorg. Chim. Acta 2012; 389, 29–35.
28. Alcindor T., Beauger N. Oxaliplatin: a review in the era of molecularly targeted therapy. Curr. Oncol. 2011; 18, 18–25.
29. Cai L., Yu C., Ba L., Liu Q., Qian Y., Yang B., Gao C. Anticancer platinum-based complexes with non-classical structures. Appl. Organomet. Chem. 2018; 32, e4228.
30. Montaña Á. M., Batalla C. The rational design of anticancer platinum complexes: the importance of the structure-activity relationship. Curr. Med. Chem. 2009; 16, 2235–2260.
31. Coluccia M., Natile G. Trans-platinum complexes in cancer therapy. Anti-Cancer Agents Med. Chem. 2007; 7, 111–123.
32. Wheate N. J., Collins J. G. Multi-nuclear platinum drugs: a new paradigm in chemotherapy. Curr. Med. Chem. Anti-Cancer Agents 2005; 5, 267–279.
33. Ravera M., Gabano E., McGlinchey M. J., Osella D. A view on multi-action Pt(IV) antitumor prodrugs. Inorg. Chim. Acta 2009; 492, 32–47.
34. Gibson D. Multi-action Pt(IV) anticancer agents; do we understand how they work? J. Inorg. Biochem. 2019; 191, 77–84.
35. Medici S., Peana M., Nurchi V. M., Lachowicz J. I., Crisponi G., Zoroddu M. A. Noble metals in medicine: Latest advances. Coord. Chem. Rev. 2015; 284, 329‒350.
36. Simpson P. V., Desai N. M., Casari I., Massi M., Falasca M. Metal-based antitumor compounds: beyond cisplatin. Future Med. Chem. 2019; 11, 119‒135.
37. Trudu F., Amato F., Vaňhara P., Pivetta P., Peña-Méndez E. M., Havel J. Coordination compounds in cancer: past, present and perspectives. Future Med. Chem. J. Appl. Biomed. 2015; 13, 79‒103.
38. Kostova I. Ruthenium complexes as anticancer agents. Curr. Med. Chem. 2006; 13, 1085‒1107.
39. Bergamo A., Gaiddon C., Schellens J. H. M., Beijnen J. H., Sava G. Approaching tumour therapy beyond platinum drugs. Status of the art and perspectives of ruthenium drug candidates. J. Inorg. Biochem. 2012; 106, 90‒99.
40. Coverdale J. P. C., Laroiya-McCarron T., Romero-Canelón I. Designing ruthenium anticancer drugs: what have we learnt from the key drug candidates? Inorganics 2019; 7, 31.
41. Alessio E., Messori L. NAMI-A and KP1019/1339, two iconic ruthenium anticancer drug candidates face-to-face: a case story in medicinal inorganic chemistry. Molecules 2019; 24, 1995.
42. Brabec V., Kasparkova J. Ruthenium coordination compounds of biological and biomedical significance. DNA binding agents. Coord. Chem. Rev. 2018; 376, 75‒94.
43. Graf N., Lippard S. J. Redox activation of metal-based prodrugs as a strategy for drug delivery. Adv. Drug Deliv. Rev. 2012; 64, 993‒1004.
44. Thota S., Rodrigues D. A., Crans D. C., Barreiro E. J. Ru(II) compounds: next-generation anticancer metallotherapeutics? J. Med. Chem. 2018; 61, 5805‒5821.
45. Garoufis A., Hadjikakou S. K., Hadjiliadis N. Palladium coordination compounds as anti-viral, anti-fungal, anti-microbial and anti-tumor agents. Coord. Chem. Rev. 2009; 253, 1384‒1397.
46. Fischer-Fodor E., Mikláš R., Rišiaňová L., Cenariu M., Grosu I. G., Virag P., Perde-Schrepler M., Tomuleasa C., Berindan-Neagoe I., Devínsky F., Miklášová N. Novel palladium(II) complexes that influence prominin-1/CD133 expression and stem cell factor release in tumor cells. Molecules 2017; 22, 561.
47. Alam M. N., Huq F. Comprehensive review on tumour active palladium compounds and structure-activity relationships. Coord. Chem. Rev. 2016; 316, 36–67.
48. Kostova I. Titanium and vanadium complexes as anticancer agents. Anti-Cancer Agents Med. Chem. 2009; 9, 827‒842.
49. Bowman D. C. The amazingly versatile titanocene derivatives. J. Chem. Ed. 2006; 83, 735‒740.
50. Skoupilová H., Hrstka R. Pokroky ve využití organokovových sloučenin při vývoji protinádorových léčiv. Klin. Onkol. 2019; 32(Suppl 3), 3S25–3S33.
51. Buettner K. M., Valentine A. M. Bioinorganic chemistry of titanium. Chem. Rev. 2012; 112, 1863–1881.
52. Olszewski U., Hamilton G. Mechanisms of cytotoxicity of anticancer titanocenes. Anti-Cancer Agents Med. Chem. 2010; 10, 302–311.
53. Tshuva E. Y., Ashenhurst J. A. Cytotoxic titanium(IV) complexes: renaissance. Eur. J. Inorg. Chem. 2009; 2009, 2203–2218.
54. Jakupec, M. A., Keppler B. K. Gallium in cancer treatment. Curr. Top. Med. Chem. 2004; 4, 1575–1583.
55. Lessa J. A., Parrilha G. L., Beraldo H. Gallium complexes as new promising metallodrug candidates. Inorg. Chim. Acta 2012; 393, 53–63.
56. Timerbaev A. R. Advances in developing tris(8-quinolinolato)gallium(III) as an anticancer drug: critical appraisal and prospects. Metallomics 2009; 1, 193–198.
57. Devi J., Yadav J. Recent advancements in organotin(IV) complexes as potential anticancer agents. Anti-Cancer Agents Med. Chem. 2018; 18, 335–353.
58. Niu L., Li Y., Li Q. Medicinal properties of organotin compounds and their limitations caused by toxicity. Inorg. Chim. Acta 2014; 423, 2–13.
59. Ott I. On the medicinal chemistry of gold complexes as anticancer drugs. Coord. Chem. Rev. 2009; 253, 1670–1681.
60. Onodera T., Momose I., Kawada M. Potential anticancer activity of auranofin. Chem. Pharm. Bull. 2019; 67, 186–191.
61. Hoonjan M., Jadhav V., Bhatt P. Arsenic trioxide: insights into its evolution to an anticancer agent. J. Biol. Inorg. Chem. 2018; 23, 313–329.
62. Dilda P. J., Hogg P. J. Arsenical-based cancer drugs. Cancer Treat. Rev. 2007; 33, 542–564.
63. Bishayee A., Waghray A., Patel M. A., Chatterjee M. Vanadium in the detection, prevention and treatment of cancer: the in vivo evidence. Cancer Lett. 2010; 294, 1–12.
64. Pessoa J. C., Etcheverry S., Gambino D. Vanadium compounds in medicine. Coord. Chem. Rev. 2015; 301–302, 24–48.
65. Habala L., Bartel C., Giester G., Jakupec M. A., Keppler B. K., Rompel A. Complexes of N-hydroxyethyl-N-benzimidazolylmethylethylenediaminediacetic acid with group 12 metals and vanadium – synthesis, structure and bioactivity of the vanadium complex. J. Inorg. Biochem. 2015; 147, 147–152.
66. D’Cruz O. J., Uckun F. M. Metvan: a novel oxovanadium(IV) complex with broad spectrum anticancer activity. Expert Opin. Investig. Drugs 2002; 11, 1829–1836.
67. Sutton E. C., McDevitt C. E., Yglesias M. V., Cunningham R. M., DeRose V. J. Tracking the cellular targets of platinum anticancer drugs: current tools and emergent methods. Inorg. Chim. Acta 2019; 498, 118984.
68. Deo K. M., Pages B. J., Ang D. L., Gordon C. P., Aldrich-Wright J. R. Transition metal intercalators as anticancer agents – recent advances. Int. J. Mol. Sci. 2016; 17, 1818.
69. Ma D.-L., Wu C., Cheng S.-S., Lee F.-W., Han Q.-B., Leung C.-H. Development of natural product-conjugated metal complexes as cancer therapies. Int. J. Mol. Sci. 2019; 20, 341.
70. Wang X., Wang X., Jin S., Muhammad N., Guo Z. Stimuli-responsive therapeutic metallodrugs. Chem. Rev. 2019; 119, 1138‒1192.
71. Meggers E. Targeting proteins with metal complexes. Chem. Commun. 2009; 1001‒1010.
72. Poursharifi M., Wlodarczyk M. T., Mieszawska A. J. Nano-based systems and biomacromolecules as carriers for metallodrugs in anticancer therapy. Inorganics 2019; 7, 2.
73. Imberti C., Zhang P., Huang H., Sadler P. J. New designs for phototherapeutic transition metal complexes. Angew. Chem. Int. Ed. 2019; 58, 2‒15.
74. Munro S., Colón K. L., Yin H., Roque J., Konda P., Gujar S., Thummel R. P., Lilge L., Cameron C. G., McFarland S. A. Transition metal complexes and photodynamic therapy from a tumor-centered approach: challenges, opportunities, and highlights from the development of TLD1433. Chem. Rev. 2019; 119, 797‒828.
Štítky
Farmácia FarmakológiaČlánok vyšiel v časopise
Česká a slovenská farmacie
2020 Číslo 1
Najčítanejšie v tomto čísle
- Komplexy kovov v medicíne a farmácii – minulosť a súčasnosť II*
- Pharmacokinetic aspects of beta-lactam antibiotic therapy in intensive care unit patients: A one-center experience with TDM
- Development and uniformity evaluation of low-dose medicated chewing gums prepared by compression method
- Zomrel Alois Borovanský