#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

The gut microbiota, its relationship to the immune system, and possibilities of its modulation


Authors: I. Lukáčová 1;  Ľ. Ambro 1;  K. Dubayová 2;  M. Mareková 2
Authors place of work: Ústav experimentálnej medicíny, UPJŠ v Košiciach, Lekárska fakulta, Slovenská republika 1;  Ústav lekárskej a klinickej biochémie, UPJŠ v Košiciach, Lekárska fakulta, Slovenská republika 2
Published in the journal: Epidemiol. Mikrobiol. Imunol. 72, 2023, č. 1, s. 40-53
Category: Souhrnné sdělení

Summary

Research of the gut microbiota allows a better understanding of its composition and function and reveals the links between changes in the composition of bacteria and various intestinal but also systemic diseases. The gut microbiota performs several of important functions in the host body and influences many physiological processes. Gut bacteria synthesize many compounds needed for the proper function of the body (e.g., vitamins, short-chain fatty acids, and amino acids). They help maintain the integrity of the intestinal barrier and protect against pathogens. The gut microbiota plays a crucial role in the development and function of the immune system. Significant changes in the composition of the intestinal microbiota led to a dysbiotic state and the loss of its beneficial functions for humans. The review article summarizes the basic knowledge about the composition and function of the bacterial gut microbiota in healthy people, its role in the development of the immune system, and the mechanisms involved in maintaining homeostasis. It also presents current knowledge about the possibility of targeted modulation of the bacterial gut microbiota and faecal transplantation.

Keywords:

Modulation – microbiota – gut – innate and adaptive immune system – faecal transplantation


Zdroje

1. Rinninella E, Raoul P, Cintoni M, et al. What is the healthy gut microbiota composition? A changing ecosystem across age, enviroment, diet, and diseases. Microorganisms, 2019; 7(1):1–22.

2. Brestoff JR, Artis D. Commensal bacteria at the interface of host metabolism and the immune system. Nature Immunology, 2013;14(7):676–684.

3. Khosravi A, Mazmanian SK. Disruption of the gut microbiome as a risk factor for microbial infections. Curr. Opin. Microbiol, 2013;16:221–227.

4. Bhardwaj N, Geva-Zatorsky N. Gut microbes as a therapeutic armory. Drug Discovery Today: Disease Models, 2018;28:51–59.

5. Marchesi JR, Adams DH, Fava F, et al. The gut microbiota and host health: a new clinical frontier. Gut, 2015;65(2):330–339.

6. Thursby E, Juge N. Introduction to the human gut microbiota. Biochemical Journal, 2017;474(11):1823–1836.

7. Mills S, Stanton C, Lane J, et al. Precision Nutrition and the Microbiome. Part I: Current State of the Science. Nutrients, 2019;11(4):1–45.

8. Lamas B, Richard, Leducq V, et al. CARD9 impacts colitis by altering gut microbiota metabolism of tryptophan into aryl hydrocarbon receptor ligands. Nature Medicine, 2016,22(6):598–605.

9. Gérard P. Metabolism of Cholesterol and Bile Acids by the Gut Microbiota. Pathogens, 2013;3(1):14–24.

10. Cherrier M, Eberl G, The development of LTi cells. Current Opinion in Immunology, 2012; 24(2):178–183.

11. Tsuji M, Suzuki K, Kitamura H, et al. Requirement for lymphoid tissue-inducer cells in isolated follicle formation and T cell-independent immunoglobulin A generation in the gut. Immunity, 2008;29(2):261–271.

12. Ismail AS. Severson KM, Vaishnava S, et al. γδ intraepithelial lymphocytes are essential mediators of host–microbial homeostasis at the intestinal mucosal surface. Proceedings of the National Academy of Sciences, 2011;108(21):8743–8748.

13. Maynard CL, Elson CO, Hatton RD, et al. Reciprocal interactions of the intestinal microbiota and immune system. Nature, 2012;489(7415):231–241.

14. Petersson, J. Schreiber O, Hansson GC, et al. Importance and regulation of the colonic mucus barrier in a mouse model of colitis. American Journal of Physiology-Gastrointestinal and Liver Physiology, 2011;300(2):327–333.

15. Johansson MEV, Larsson JMH, Hansson GC. The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host–microbial interactions. Proceedings of the National Academy of Sciences, 2011;108(Suppl 1):4659–4665.

16. Vijay-Kumar M, Aitken JD, Gewirtz AT. Toll like receptor-5: protecting the gut from enteric microbes. Seminars in Immunopathology, 2008;30(1):11–21.

17. Round JL, Lee SM, Li J, et al. The Toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota. Science, 2011;332(6032):974–977.

18. Atarashi K, Tanoue T, Shima T, et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science, 2011;331(6015):337–341.

19. Weaver CT, Hatton RD. Interplay between the TH17 and TReg cell lineages: a (co-)evolutionary perspective. Nature Reviews Immunology, 2009; 9(12): 883–889.

20. Lee YK, Mukasa R, Hatton RD, et al. Developmental plasticity of Th17 and Treg cells. Current Opinion in Immunology, 2009;21(3):274–280.

21. Cong Y, Feng T, Fujihashi K, et al. A dominant, coordinated T regulatory cell–IgA response to the intestinal microbiota. Proceedings oft he National Academy of Sciences, 2009;106(46):19256– 19261.

22. Markowiak P, Ślizewska K. Effects of Probiotics, Prebiotics, and Synbiotics on Human Health. Nutrients, 2017;9(9):1–30.

23. Ishiguro E, Haskey N, Campbell K. Gut Microbiota: Interactive Effects on Nutrition and Health, 2018;133–158, (1. ed.) Academic Press.

24. Fong W, Li Q, Yu, J. Gut microbiota modulation: a novel strategy for prevention and treatment of colorectal cancer. Oncogene, 2020;39(Suppl 1):4925–4943.

25. Aggeletopoulou I, Konstanakis C, Assimakopoulos SF, et al. The role of the gut microbiota in the treatment of inflammatory bowel diseases. Microbial Pathogenesis, 2019;137(103774):1– 10.

26. Pandey KR, Naik SR, Vakil BV. Probiotics, prebiotics and synbiotics- a review. Journal of Food Science and Technology, 2015;52(12):7577–7587.

27. Konstantinov SR, Kuipers EJ, Peppelenbosch MP. Functional genomic analyses of the gut microbiota for CRC screening. Nature Reviews Gastroenterology and Hepatology, 2013;10(12):41–745.

28. Konishi H, Fujiya M, Tanaka H, et al. Probiotic-derived ferrichrome inhibits colon cancer progression via JNK-mediated apoptosis. Nature Communications, 2016;7(1):1–12.

29. Papanicolas LE, Choo JM, Wang Y, et al. Bacterial viability in faecal transplants: Which bacteria survive? EBioMedicine, 2019;41:509–516.

30. Faintuch J, Faintuch S. Microbiome and Metabolome in Diagnosis, Therapy, and Other Strategic Applications. 2019; Academic Press: 425–434.

31. Sarrabayrouse G, Landolfi S, Pozuelo M, et al. Mucosal microbial load in Crohn’s disease: A potential predictor of response to faecal microbiota transplantation. EBioMedicine, 2020;51(102611):1–12.

32. Vázquez-Castellanos JF, Biclot A, Vrancken G, et al. “Design of synthetic microbial consortia for gut microbiota modulation“ Current Opinion in Pharmacology, 2019;49:52–59.

33. Li M, Wang B, Sun X, et al. Upregulation of Intestinal Barrier Function in Mice with DSS-Induced Colitis by a Defined Bacterial Consortium Is Associated with Expansion of IL-17A Producing Gamma Delta T Cells. Frontiers in Immunology, 2017;8(824):1–14.

34. Tanoue T, Morita S, Plichta DR, et al. A defined commensal consortium elicits CD8 T cells and anti-cancer immunity. Nature, 2019;565(7741):600–605.

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Mikrobiológia

Článok vyšiel v časopise

Epidemiologie, mikrobiologie, imunologie

Číslo 1

2023 Číslo 1
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#