#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Mutace isocitrátdehydrogenázy jsou lepší prognostický marker než metylace promotoru O6-metylguanin-DNA-metyltransferázy u glioblastomů – retrospektivní molekulárně genetická studie gliomů z jednoho centra


Mutace isocitrátdehydrogenázy jsou lepší prognostický marker než metylace promotoru O6-metylguanin-DNA-metyltransferázy u glioblastomů – retrospektivní molekulárně genetická studie gliomů z jednoho centra

Východiska:
Mutace isocitrátdehydrogenázy 1 a 2 (IDH1/2) jsou slibným prognostickým biomarkerem gliálních nádorů. Cílem naší studie bylo ověřit prognostický efekt IDH1/2 mutací na skupině pacientů s gliálními nádory z České republiky při použití jednoduché a spolehlivé IDH genotypizace.

Materiál a metody:
U 145 pacientů s gliálními nádory bylo provedeno vyšetření tří nejčastějších IDH mutací IDH1 R132H, IDH1 R132C a IDH2 R172K pomocí kompetitivní polymerazové řetězové reakce (PCR) amplifikace amplikonů s odlišnou teplotou tání (competitive amplification of differentially melting amplicons – CADMA PCR). Dále byla stanovena metylace promotoru O6-metylguanine-DNA metyltransferáza (MGMT), počet kopií genů EGFR, p53, RB1, MDM2, CDKN2A a chromozomálních regionů 1p, 19q a 10p. Výsledky byly korelovány s klinickými charakteristikami pacientů.

Výsledky:
IDH mutace byly pozitivně asociovány s MGMT metylací (OR 3,08, 95% CI 1,387–7,282; p = 0,007), 1p/19q kodelecí (OR 8,85, 95% CI 2,367–42,786; p = 0,002) a negativně asociovány s EGFR amplifikací (OR 0,12, 95% CI 0,019–0,437; p = 0,006) a ztrátou 10p (OR 0,09, 95% CI 0,005–0,436; p = 0,019). Celkové přežívání ve skupině IDH-mutovaných glioblastomů bylo 25 měsíců, zatímco u IDH-wild-type glioblastomů pouze 9 měsíců (p = 0,035) a současně se přežívání pacientů s metylovaným vs. nemetylovaným promotorem MGMT významně nelišilo (p = 0,166).

Závěr:
Navzdory tomu, že IDH1/2 mutace jsou úzce asociovány s MGMT metylací u pacientů s gliálními nádory, ve skupině glioblastomů se IDH1/2 mutace jeví jako silnější prognostický marker než MGMT metylace a měly by být biomarkerem první volby pro určení prognózy gliálního nádoru, zvláště při použití genotypizační metody CADMA PCR.

Klíčová slova:
isocitrátdehydrogenáza – polymerázová řetězová reakce – gliom – glioblastom

Autoři deklarují, že v souvislosti s předmětem studie nemají žádné komerční zájmy.

Redakční rada potvrzuje, že rukopis práce splnil ICMJE kritéria pro publikace zasílané do biomedicínských časopisů.

Tato práce byla podpořena Ministerstvem zdravotnictví (NT 13581), Technologickou agenturou (TE02000058), Ministerstvem školství, mládeže a tělovýchovy (LM2015089) České republiky. Infrastruktura projektu byla podpořena grantem Národního programu udržitelnosti (NPU LO1304).

Obdrženo:
3. 5. 2017

Přijato:
23. 7. 2017


Autoři: M. Houdova Megova 1;  J. Drábek 1;  Z. Dwight 2;  R. Trojanec 1;  V. Koudelakova 1;  J. Vrbková 1;  O. Kalita 3;  S. Mlcochova 1;  M. Rabcanova 1;  M. Hajdúch 1
Působiště autorů: Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry Palacky University and University Hospital in Olomouc, Czech republic 1;  Department of Pathology, University of Utah, Salt Lake City, Utah, USA 2;  Department of Neurooncology, Faculty of Medicine and Dentistry, Palacky University and University Hospital in Olomouc, Czech republic 3
Vyšlo v časopise: Klin Onkol 2017; 30(5): 361-371
Kategorie: Original Articles
prolekare.web.journal.doi_sk: https://doi.org/10.14735/amko2017361

Souhrn

Východiska:
Mutace isocitrátdehydrogenázy 1 a 2 (IDH1/2) jsou slibným prognostickým biomarkerem gliálních nádorů. Cílem naší studie bylo ověřit prognostický efekt IDH1/2 mutací na skupině pacientů s gliálními nádory z České republiky při použití jednoduché a spolehlivé IDH genotypizace.

Materiál a metody:
U 145 pacientů s gliálními nádory bylo provedeno vyšetření tří nejčastějších IDH mutací IDH1 R132H, IDH1 R132C a IDH2 R172K pomocí kompetitivní polymerazové řetězové reakce (PCR) amplifikace amplikonů s odlišnou teplotou tání (competitive amplification of differentially melting amplicons – CADMA PCR). Dále byla stanovena metylace promotoru O6-metylguanine-DNA metyltransferáza (MGMT), počet kopií genů EGFR, p53, RB1, MDM2, CDKN2A a chromozomálních regionů 1p, 19q a 10p. Výsledky byly korelovány s klinickými charakteristikami pacientů.

Výsledky:
IDH mutace byly pozitivně asociovány s MGMT metylací (OR 3,08, 95% CI 1,387–7,282; p = 0,007), 1p/19q kodelecí (OR 8,85, 95% CI 2,367–42,786; p = 0,002) a negativně asociovány s EGFR amplifikací (OR 0,12, 95% CI 0,019–0,437; p = 0,006) a ztrátou 10p (OR 0,09, 95% CI 0,005–0,436; p = 0,019). Celkové přežívání ve skupině IDH-mutovaných glioblastomů bylo 25 měsíců, zatímco u IDH-wild-type glioblastomů pouze 9 měsíců (p = 0,035) a současně se přežívání pacientů s metylovaným vs. nemetylovaným promotorem MGMT významně nelišilo (p = 0,166).

Závěr:
Navzdory tomu, že IDH1/2 mutace jsou úzce asociovány s MGMT metylací u pacientů s gliálními nádory, ve skupině glioblastomů se IDH1/2 mutace jeví jako silnější prognostický marker než MGMT metylace a měly by být biomarkerem první volby pro určení prognózy gliálního nádoru, zvláště při použití genotypizační metody CADMA PCR.

Klíčová slova:
isocitrátdehydrogenáza – polymerázová řetězová reakce – gliom – glioblastom

Autoři deklarují, že v souvislosti s předmětem studie nemají žádné komerční zájmy.

Redakční rada potvrzuje, že rukopis práce splnil ICMJE kritéria pro publikace zasílané do biomedicínských časopisů.

Tato práce byla podpořena Ministerstvem zdravotnictví (NT 13581), Technologickou agenturou (TE02000058), Ministerstvem školství, mládeže a tělovýchovy (LM2015089) České republiky. Infrastruktura projektu byla podpořena grantem Národního programu udržitelnosti (NPU LO1304).

Obdrženo:
3. 5. 2017

Přijato:
23. 7. 2017


Zdroje

1. Furnari FB, Huang HJ, Cavenee WK. Genetics and malignant progression of human brain tumours. Cancer Surv 1995; 25: 233–275.

2. Ohgaki H, Kleihues P. Epidemiology and etiology of gliomas. Acta Neuropathol 2005; 109 (1): 93–108. doi: 10.1007/s00401-005-0991-y.

3. Parsons D, Jones S, Zhang X et al. An integrated genomic analysis of human glioblastoma multiforme. Science 2008; 321 (5897): 1807–1812. doi: 10.1126/science.1164382.

4. Yan H, Parsons DW, Jin G et al. IDH1 and IDH2 mutations in gliomas. N Engl J Med 2009; 360 (1533–4406): 765–773. doi: 10.1056/NEJMoa0808710.

5. Horbinski C. What do we know about IDH1/2 mutations so far, and how do we use it? Acta Neuropathol 2013; 125 (5): 621–636. doi: 10.1007/s00401-013-11 06-9.

6. Hartmann C, Meyer J, Balss J et al. Type and frequency of IDH1 and IDH2 mutations are related to astrocytic and oligodendroglial differentiation and age: a study of 1,010 diffuse gliomas. Acta Neuropathol 2009; 118 (4): 469–474. doi: 10.1007/s00401-009-0561-9.

7. Megova M, Drabek J, Koudelakova V et al. Isocitrate dehydrogenase 1 and 2 mutations in gliomas. J Neurosci Res 2014; 92 (12): 1611–1620. doi: 10.1002/jnr.23456.

8. Bettegowda C, Agrawal N, Jiao Y et al. Mutations in CIC and FUBP1 contribute to human oligodendroglioma. Science 2011; 333 (1095–9203): 1453–1455. doi: 10.1126/science.1210557.

9. Mulholland S, Pearson D, Hamoudi R et al. MGMT CpG island is invariably methylated in adult astrocytic and oligodendroglial tumors with IDH1 or IDH2 mutations. Int J Cancer 2012; 131 (5): 1104–1113. doi: 10.1002/ijc.26499.

10. Ichimura K, Pearson D, Kocialkowski S et al. IDH1 mutations are present in the majority of common adult gliomas but rare in primary glioblastomas. Neuro Oncol 2009; 11 (4): 341–347. doi: 10.1215/15228517-2009-025.

11. Duncan C, Barwick B, Jin G et al. A heterozygous IDH1R132H/WT mutation induces genome-wide alterations in DNA methylation. Genome Res 2012; 22 (12): 2339–2355. doi: 10.1101/gr.132738.111.

12. Dang L, White D, Gross S et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 2009; 462 (7274): 739–744. doi: 10.1038/nature08617.

13. Gilbert MR, Liu Y, Neltner J et al. Autophagy and oxidative stress in gliomas with IDH1 mutations. Acta Neuropathol 2014; 127 (2): 221–233. doi: 10.1007/s00401-013-1194-6.

14. Lu C, Ward P, Kapoor G et al. IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature 2012; 483 (7390): 474–478. doi: 10.1038/nature10860.

15. SongTao Q, Lei Y, Si G et al. IDH mutations predict longer survival and response to temozolomide in secondary glioblastoma. Cancer Sci 2012; 103 (2): 269–273. doi: 10.1111/j.1349-7006.2011.02134.x.

16. Metellus P, Coulibaly B, Colin C et al. Absence of IDH mutation identifies a novel radiologic and molecular subtype of WHO grade II gliomas with dismal prognosis. Acta Neuropathol 2010; 120 (6): 719–729. doi: 10.1007/s00401-010-0777-8.

17. Gorlia T, Delattre JY, Brandes AA et al. New clinical, pathological and molecular prognostic models and calculators in patients with locally diagnosed anaplastic oligodendroglioma or oligoastrocytoma. A prognostic factor analysis of European Organisation for Research and Treatment of Cancer Brain Tumour Group Study 26951. Eur J Cancer 2013; 49 (16): 3477–3485. doi: 10.1016/j.ejca.2013.06.039.

18. Rohle D, Popovici-Muller J, Palaskas N et al. An inhibitor of mutant IDH1 delays growth and promotes differentiation of glioma cells. Science 2013; 340 (6132): 626–630. doi: 10.1126/science.1236062.

19. Louis DN, Ohgaki H, Wiestler OD et al. WHO Classification of Tumours of the Central Nervous System. 4th ed. IARC 2016; 1 (1): 408.

20. Masui K, Mischel PS, Reifenberger G. Molecular classification of gliomas. Handb Clin Neurol 2016; 97–120. doi: 10.1016/B978-0-12-802997-8.00006-2.

21. Balss J, Meyer J, Mueller W et al. Analysis of the IDH1 codon 132 mutation in brain tumors. Acta Neuropathol 2008; 116 (6): 597–602. doi: 10.1007/s00401-008-0455-2.

22. Horbinski C, Kofler J, Kelly L et al. Diagnostic use of IDH1/2 mutation analysis in routine clinical testing of formalin-fixed, paraffin-embedded glioma tissues. J Neuropathol Exp Neurol 2009; 68 (12): 1319–1325. doi: 10.1097/NEN.0b013e3181c391be.

23. Arita H, Narita Y, Matsushita Y et al. Development of a robust and sensitive pyrosequencing assay for the detection of IDH1/2 mutations in gliomas. Brain Tumor Pathol 2015; 32 (1): 22–30. doi: 10.1007/s10014-014-0186-0.

24. Watanabe T, Nobusawa S, Kleihues P et al. IDH1 mutations are early events in the development of astrocytomas and oligodendrogliomas. Am J Pathol 2009; 174 (4): 1149–1153. doi: 10.2353/ajpath.2009.080958.

25. Meyer J, Pusch S, Balss J et al. PCR-and restriction endonuclease-based detection of IDH1 mutations. Brain Pathol 2010; 20 (2): 298–300. doi: 10.1111/j.1750-3639.2009.00327.x.

26. Horbinski C, Kelly L, Nikiforov Y et al. Detection of IDH1 and IDH2 mutations by fluorescence melting curve analysis as a diagnostic tool for brain biopsies. J Mol Diagn 2010; 12 (4): 487–492. doi: 10.2353/jmoldx.2010.090 228.

27. Lv S, Teugels E, Sadones J et al. Correlation between IDH1 gene mutation status and survival of patients treated for recurrent glioma. Anticancer Res 2011; 31 (12): 4457–4463.

28. Perizzolo M, Winkfein B, Hui S et al. IDH mutation detection in formalin-fixed paraffin-embedded gliomas using multiplex PCR and single-base extension. Brain Pathol 2012; 22 (5): 619–624. doi: 10.1111/j.1750-3639.2012.00579.x.

29. Pang B, Durso MB, Hamilton RL et al. A novel COLD-PCR/FMCA assay enhances the detection of low-abundance IDH1 mutations in gliomas. Diagn Mol Pathol 2013; 22 (1): 28–34. doi: 10.1097/PDM.0b013e31826 c7ff8.

30. Jancik S, Drabek J, Berkovcova J et al. A comparison of Direct sequencing, Pyrosequencing, High resolution melting analysis, TheraScreen DxS, and the K-ras StripAssay for detecting KRAS mutations in non small cell lung carcinomas. J Exp Clin Cancer Res 2012; 31 (1756–9966): 79. doi: 10.1186/1756-9966-31-79.

31. Louis DN, Ohgaki H, Wiestler OD et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 2007; 114 (2): 97–109. doi: 10.1007/s00401-007-0243-4.

32. Bouchalova K, Trojanec R, Kolar Z et al. Analysis of ERBB2 and TOP2A gene status using fluorescence in situ hybridization versus immunohistochemistry in localized breast cancer. Neoplasma 2006; 53 (5): 393–401.

33. Horbinski C, Miller C, Perry A. Gone FISHing: clinical lessons learned in brain tumor molecular diagnostics over the last decade. Brain Pathol 2011; 21 (1): 57–73. doi: 10.1111/j.1750-3639.2010.00453.x.

34. Pinkham MB, Telford N, Whitfield GA et al. FISHing Tips: What Every Clinician Should Know About 1p19q Analysis in Gliomas Using Fluorescence in situ Hybridisation. Clin Oncol (R Coll Radiol) 2015; 27 (8): 445–453. doi: 10.1016/j.clon.2015.04.008.

35. Kristensen LS, Andersen GB, Hager H et al. Competitive amplification of differentially melting amplicons (CADMA) enables sensitive and direct detection of all mutation types by high-resolution melting analysis. Hum Mutat 2012; 33 (1098–1004): 264–271. doi: 10.1002/humu. 21598.

36. Parrella P, la Torre A, Copetti M et al. High specificity of quantitative methylation-specific PCR analysis for MGMT promoter hypermethylation detection in gliomas. J Biomed Biotechnol 2009; 531692. doi: 10.1155/ 2009/531692.

37. Baumann S, Keller G, Puhringer F et al. The prognostic impact of O6-Methylguanine-DNA Methyltransferase (MGMT) promotor hypermethylation in esophageal adenocarcinoma. Int J Cancer 2006; 119 (2): 264–268. doi: 10.1002/ijc.21848.

38. Toyooka KO, Toyooka S, Maitra A et al. Establishment and validation of real-time polymerase chain reaction method for CDH1 promoter methylation. Am J Pathol 2002; 161 (2): 629–634. doi: 10.1016/S0002-9440 (10) 64218-6.

39. Weisenberger DJ, Campan M, Long TI et al. Analysis of repetitive element DNA methylation by MethyLight. Nucleic Acids Res 2005; 33 (1362–4962): 6823–6836. doi: 10.1093/nar/gki987.

40. Loussouarn D, Le Loupp AG, Frenel JS et al. Comparison of immunohistochemistry, DNA sequencing and allele-specific PCR for the detection of IDH1 mutations in gliomas. Int J Oncol 2012; 40 (6): 2058–2062. doi: 10.3892/ijo.2012.1404.

41. Das BR, Tangri R, Ahmad F et al. Molecular investigation of isocitrate dehydrogenase gene (IDH) mutations in gliomas: first report of IDH2 mutations in Indian patients. Asian Pac J Cancer Prev 2013; 14 (12): 7261–7264.

42. Wick W, Meisner C, Hentschel B et al. Prognostic or predictive value of MGMT promoter methylation in gliomas depends on IDH1 mutation. Neurology 2013; 81 (17): 1515–1522. doi: 10.1212/WNL.0b013e3182a95 680.

43. Olar A, Aldape K. Biomarkers classification and therapeutic decision-making for malignant gliomas. Curr Treat Options Oncol 2012; 13 (4): 417–436. doi: 10.1007/s11864-012-0210-8.

44. Sanson M, Marie Y, Paris S et al. Isocitrate de-hydrogenase 1 codon 132 mutation is an important prognostic biomarker in gliomas. J Clin Oncol 2009; 27 (25): 4150–4154. doi: 10.1200/JCO.2009.21.9832.

45. Ohgaki H, Kleihues P. Genetic pathways to primary and secondary glioblastoma. Am J Pathol 2007; 170 (5): 1445–1453. doi: 10.2353/ajpath.2007.070011.

46. Peng Z, Haitao X, Pin C et al. IDH1/IDH2 Mutations Define the Prognosis and Molecular Profiles of Patients with Gliomas: A Meta-Analysis. PLoS One 2013; 8 (7): e68782.doi: 10.1371/journal.pone.0068782.

47. Reis GF, Pekmezci M, Hansen HM et al. CDKN2A loss is associated with shortened overall survival in lower-grade (World Health Organization Grades II–III) Astrocytomas. J Neuropathol Exp Neurol 2015; 74 (5): 442–452. doi: 10.1097/NEN.0000000000000188.

48. Zhao J, Ma W, Zhao H. Loss of heterozygosity 1p/19q and survival in glioma: a meta-analysis. Neuro Oncol 2014; 16 (1523–5866): 103–112. doi: 10.1093/neuonc/ not145.

49. Smith JS, Perry A, Borell TJ et al. Alterations of chromosome arms 1p and 19q as predictors of survival in oligodendrogliomas, astrocytomas, and mixed oligoastrocytomas. J Clin Oncol 2000; 18 (0732–183X): 636–645. doi: 10.1200/JCO.2000.18.3.636.

50. Lhotská H, Zemanová Z, Kramář F et al. Molecular cytogenetic analysis of chromosomal aberrations in cells of low grade gliomas and its contribution for tumour classif. Klin Onkol 2014; 27 (3): 183–191. doi: 10.14735/amko2014183.

51. Kuo LT, Kuo KT, Lee MJ et al. Correlation among pathology, genetic and epigenetic profiles, and clinical outcome in oligodendroglial tumors. Int J Cancer 2009; 124 (12): 2872–2879. doi: 10.1002/ijc.24303.

52. Ichimura K, Bolin MB, Goike HM et al. Deregulation of the p14ARF/MDM2/p53 pathway is a prerequisite for human astrocytic gliomas with G1-S transition control gene abnormalities. Cancer Res 2000; 60 (2): 417–424.

53. Kramar F, Zemanova Z, Michalova K et al. Cytogenetic analyses in 81 patients with brain gliomas: correlation with clinical outcome and morphological data. J Neuro-oncol 2007; 84 (2): 201–211. doi: 10.1007/s11060-007-9358-7.

54. Weller M, Felsberg J, Hartmann C et al. Molecular predictors of progression-free and overall survival in patients with newly diagnosed glioblastoma: a prospective translational study of the German Glioma Network. J Clin Oncol 2009; 27 (34): 5743–5750. doi: 10.1200/ JCO.2009.23.0805.

55. Homma T, Fukushima T, Vaccarella S et al. Correlation among pathology, genotype, and patient outcomes in glioblastoma. J Neuropathol Exp Neurol 2006; 65 (9): 846–854. doi: 10.1097/01.jnen.0000235118.75182.94.

56. Houillier C, Lejeune J, Benouaich-Amiel A et al. Prognostic impact of molecular markers in a series of 220 primary glioblastomas. Cancer 2006; 106 (10): 2218–2223. doi: 10.1002/cncr.21819.

57. Polivka J, Polivka J Jr, Rohan V et al. Isocitrate dehydrogenase-1 mutations as prognostic biomarker in glioblastoma multiforme patients in West Bohemia. Biomed Res Int 2014; 2014: 735659. doi: 10.1155/2014/735659.

58. Hegi M, Diserens AC, Gorlia T et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 2005; 352 (10): 997–1003. doi: 10.1056/NEJMoa043331.

59. Bady P, Sciuscio D, Diserens AC et al. MGMT methylation analysis of glioblastoma on the Infinium methylation BeadChip identifies two distinct CpG regions associated with gene silencing and outcome, yielding a prediction model for comparisons across datasets, tumor grades, and CIMP-status. Acta Neuropathol 2012; 124 (4): 547–560. doi: 10.1007/s00401-012-1016-2.

60. Noushmehr H, Weisenberger D, Diefes K et al. Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell 2010; 17 (5): 510–522. doi: 10.1016/j.ccr.2010.03.017.

61. Wiestler B, Capper D, Sill M et al. Integrated DNA methylation and copy-number profiling identify three clinically and biologically relevant groups of anaplastic glioma. Acta Neuropathol 2014; 128 (4): 561–571. doi: 10.1007/s00401-014-1315-x.

62. Brandner S, von Deimling A. Diagnostic, prognostic and predictive relevance of molecular markers in gliomas. Neuropathol Appl Neurobiol 2015; 41 (6): 694–720. doi: 10.1111/nan.12246.

63. Wick W, Hartmann C, Engel C et al. NOA-04 randomized phase III trial of sequential radiochemotherapy of anaplastic glioma with procarbazine, lomustine, and vincristine or temozolomide. J Clin Oncol 2009; 27 (35): 5874–5880. doi: 10.1200/JCO.2009.23.6497.

64. Molenaar RJ, Verbaan D, Lamba S et al. The combination of IDH1 mutations and MGMT methylation status predicts survival in glioblastoma better than either IDH1 or MGMT alone. Neuro Oncol 2014; 16 (9): 1263–1273. doi: 10.1093/neuonc/nou005.

65. Christians A, Hartmann C, Benner A et al. Prognostic value of three different methods of MGMT promoter methylation analysis in a prospective trial on newly diagnosed glioblastoma. PLoSOne 2012; 7 (3): e33449. doi: 10.1371/journal.pone.0033449

Štítky
Paediatric clinical oncology Surgery Clinical oncology

Článok vyšiel v časopise

Clinical Oncology

Číslo 5

2017 Číslo 5
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#