PŘEHLEDY A ODBORNÁ SDĚLENÍ

Prenylované fenoly s cytotoxickou a antiproliferativní aktivitou izolované z *Morus alba*

Prenylated phenols with cytotoxic and antiproliferative activity isolated from *Morus alba*

Nikol Prausová • Peter Kollár

Došlo 18. dubna 2019 / Přijato 7. května 2019

Souhrn

Tento přehledový příspěvek se zabývá cytotoxickou a antiproliferativní aktivitou 57 prenylovaných fenolů izolovaných z Morus alba. Prenylovaný postranní řetězec, který může být různě modifikován, zvyšuje lipofilitu látek, čímž zlepšuje jejich prostupnost biologickými membránami a vede tak ke zvýšení biologické dostupnosti. Cílem byla snaha popsat vztah mezi strukturou prenylovaných fenolů a jejich cytotoxickým účinkem a objasnit různé mechanismy, kterými cytotoxické prenylované fenoly indukují apoptosu. Závěry ukázaly, že se cytotoxicita látek zvyšuje s rostoucím počtem prenylovaných postranních řetězců a ketalových skupin. Modifikace prenylovaného postranního řetězce, jako je například hydroxylace, cytotoxicitu naopak snižuje. Cytotoxickou aktivitu ovlivňuje také přítomnost prenylových a hydroxylových skupin ve specifických polohách.

Klíčová slova: *Morus alba* • prenylované fenoly • antiproliferativní aktivita • cytotoxicita

Summary

This review deals with cytotoxic and antiproliferative activity of fifty seven prenylated phenols isolated from *Morus alba*. Prenyl side chain, which can be variously modified, increases lipophilicity of the substances, thereby improving their penetration through biological membranes and thus results in an increased bioavailability. The objective was to describe the relationship between structure of the prenylated phenols and their cytotoxic effect and to clarify various mechanisms by which cytotoxic prenylated phenols induce apoptosis. The conclusions showed that the cytotoxicity of the substances

Veterinární a farmaceutická univerzita Brno, Farmaceutická fakulta Ústav humánní farmakologie a toxikologie Palackého 1/3, 612 42 Brno

e-mail: F14103@vfu.cz; KOLLARP@vfu.cz

increases with increasing number of the prenyl side chains and ketal groups. Conversely, modification of the prenyl side chain, such as hydroxylation, reduces cytotoxicity. The cytotoxic activity is also influenced by the presence of prenyl and hydroxyl groups at specific positions.

Key words: *Morus alba* • prenylated phenols • antiproliferative activity • cytotoxicity

Úvod

Nádorová onemocnění jsou po kardiovaskulárních chorobách druhou nejčastější příčinou úmrtnosti v České republice a jejich incidence celosvětově stále roste. Naopak míra úmrtnosti klesá, za což je zodpovědná zvyšující se kvalita lékařské péče, časná diagnostika nádorových onemocnění a dostupnost nových diagnostických a terapeutických prostředků.

Nevýhodu chemoterapie představuje nedostatek její selektivity a toxicita. Poměrně často také dochází ke snížení účinnosti chemoterapie vznikem rezistence, což má za následek selhání léčby. Tyto zmiňované důvody jsou tedy podnětem pro hledání nových látek, které by účinkovaly selektivně a vykazovaly tak minimální cytotoxicitu vůči nenádorovým buňkám.

V léčbě nádorových onemocnění hrají nezastupitelnou roli látky přírodního původu, jako jsou například Vinca alkaloidy, taxany či deriváty podofylotoxinu a kamptotecinu. V současné době roste zájem o prenylované fenolické sloučeniny, který je zapříčiněný silnou nehydrolyzovatelnou substitucí fenolického systému prenylovými skupinami. Prenylovaný postranní řetězec zvyšuje lipofilitu látky, zlepšuje tak její prostupnost skrze buněčné stěny a navíc přispívá k cytotoxické aktivitě. *Moraceae* je jednou z nejbohatších čeledí na prenylované flavonoidy, a proto byl ke studiu prenylovaných fenolů s cytotoxickou a antiproliferativní aktivitou vybrán právě morušovník bílý.

Cílem práce je vyhledat v dostupné literatuře prenylované fenoly s cytotoxickou a antiproliferativní aktivitou izolované z *Morus alba* a následně popsat a vyhodnotit souvislosti mezi strukturou těchto látek a jejich účinkem.

N. Prausová • doc. PharmDr. Peter Kollár, Ph.D. (🖂)

Morus alba L.

Morus alba původem pochází z Číny a také je hojně pěstována v Koreji a Japonsku. Listí moruše představuje primární stravu pro bource morušového *(Bombyx mori* L.), který podporuje hedvábnický průmysl již celá staletí¹⁾. Antické Řecko moruším připisovalo narkotické a antitoxické účinky. Ve střední Asii plody moruší sušili a mleli na sladkou mouku. Dobře usušené jsou totiž trvanlivé a mohou nahrazovat cukr²⁾. Vejčitě válcovitá plodenství jsou vhodná zejména k výrobě marmelád, zmrzlin, octů, šťáv nebo vín³⁾. Z bílých plodů se rovněž připravuje mošt medové chuti²⁾.

Plody jsou bohaté na vitamin C a obsahují celou řadu minerálů – železo, vápník, fosfor, draslík nebo hořčík⁴⁾. Uplatňují se v léčbě slabosti, závrati, tinnitu, únavy, anemie, flatulence a inkontinence⁵⁾. Listům moruše se připisuje antioxidační, antimikrobiální, cytotoxický, antidiabetický, antihyperlipidemický, antiaterosklerotický, antiobezitní a kardioprotektivní účinek. Kořenová kůra vykazuje antimikrobiální, cytotoxické, protizánětlivé a antihyperlipidemické vlastnosti¹⁾. Mezi další účinky kořenové kůry se řadí účinek antibakteriální, antioxidační, hypoglykemický, neuroprotektivní, antiulcerózní a analgetický⁶⁾.

Tradiční čínská medicína používá listy, plody a kůru moruše k léčbě horečky, ochraně poškození jater, zlepšení zraku, posílení kloubů nebo ke snížení krevního tlaku¹⁾. Dále využívá i kořenové kůry k terapii kašle a astmatu⁷⁾.

Obsahové látky

Různé rostlinné části obsahují různé látky v rozlišném množství, a proto se liší i svými farmakologickými účinky. V listech jsou obsaženy flavonoidy (rutin, kvercetin, isokvercetin, moracetin, astragalin), triterpeny (lupeol), steroly (β-sitosterol), kumariny, alkaloidy, organické kyseliny a aminokyseliny. Ve větvích moruše byly objeveny flavonoidy (mulberrin, cyklomulberrin, morusin, kempferol) a fenolické látky (resveratrol). Plody zase disponují anthokyany (cyanidin), flavonoidy (kvercetin, kempferol) a tokoferoly. V kořenech byly nalezeny též flavonoidy (morusin, morusinol), alkaloidy (kalystegin) a stilbeny (oxyresveratrol)⁴.

Prenylované fenoly

Prenylované fenolické látky se objevují v čeledích Paulowniaceae (Paulownia spp.), Leguminosae (Sophora spp.), Guttiferae (Garcinia spp.), Rutaceae (Neoreaputia spp.), Cannabaceae (Cannabis a Humulus spp.) a Moraceae (Morus, Maclura, Artocarpus spp.). Prenylované fenoly zahrnují několik kategorií, přičemž je vždy nutná přítomnost společného fenolického hydroxylu na skeletu rozdílného biosyntetického původu substituovaného prenylovou skupinou. Jedná se o flavonoidy, chalkony, xanthony, stilbeny, kumariny, chinony, ftalidy, aromatické organické kyseliny a acylfloroglucinoly. Široká biologická aktivita je modifikována charakterem skeletu látky i substitucí prenylu⁸⁾.

Prenyl (3-methyl-2-buten-1-yl) nebo isoprenyl je terpenoidní postranní řetězec, jenž se často vyskytuje v jedné nebo více specifických polohách fenolického skeletu přes atom uhlíku (C-) nebo kyslíku (O-) či přes oba⁹⁾. Jinou možnost připojení tvoří cyklizace se sousedním hydroxylem za vzniku 2,2-dimethyl-pyranu nebo furanu⁸⁾.

Největší zájem o tento typ sloučenin zapříčiňuje silná, nehydrolyzovatelná C-substituce fenolického systému prenylovými skupinami, které obecně zvyšují lipofilitu a udělují molekule silnou afinitu k biologickým membránám. Jinými slovy, prenylová část působí jako transportér fenolické látky skrze buněčné stěny a dokonce přispívá k biologické aktivitě vykazované celou molekulou, což se ukázalo v nedávných studiích vztahů mezi strukturou a účinkem. Kombinace prenylové skupiny s fenolickým skeletem může tedy poskytovat sérii nových zajímavých biologických aktivit, jak je již prokázáno u mnoha izolovaných bioaktivních terpenoidů a fenolů⁹.

Prenylované flavonoidy

Podskupinu flavonoidů tvoří prenylované flavonoidy, které slučují flavonoidní skelet s lipofilním prenylovaným postranním řetězcem. Do roku 2005 bylo objeveno 37 rodů obsahujících prenylované flavonoidy. Dle současné literatury se nejvíce těchto látek nachází v čeledi *Moraceae*. V rostlinné říši jsou tyto látky pokládány za fytoalexiny, které hrají důležitou úlohu ve fyziologických procesech obrany proti patogenním mikroorganismům¹⁰.

Obecně je C-prenylace více známá než O-prenylace. C-prenylace se objevuje v poloze C-6 nebo C-8 A-kruhu nebo v poloze C-3'a C-5' B-kruhu, což se obvykle nachází v *ortho* poloze hydroxylové skupiny. C-prenylace na C-kruhu nastává vzácně. Prenylovaných postranních řetězců existuje celá řada, nejčastěji se však jedná o vzorec 3,3-dimethylallyl. Flavonoidy s geranylovou nebo farnesylovou skupinou se též objevují mezi přírodními prenylovanými flavonoidy. Oxidace, cyklizace, dehydratace či redukce prenylovaného postranního řetězce vedou ke vzniku různých modifikací terpenoidního řetězce¹⁰.

Diels-Alderový typ flavonoidů vzniká enzymatickou reakcí dehydroprenylu (dien) s α,β -dvojnou vazbou chalkonu (dienofil)¹¹). Konkrétně se jedná o intermolekulární [4+2] cykloadici¹²). Tyto sekundární metabolity se nalézají hlavně v čeledích *Moraceae* a *Zingiberaceae* a vykazují slibnou biologickou aktivitu využitelnou při hypertenzi, HIV, tuberkulóze, zánětu a nádorech¹³). Doposud bylo z čeledi *Moraceae* izolováno okolo 80 Diels-Alderových aduktů¹²).

Tab. 1. Prenylované flavony

Substituent	Látka	Buněčná linie	Hodnota účinku	Další informace	Odkaz
		NCI-H187 Vero	$IC_{50} = 31,73 \ \mu m$ $IC_{50} = 38,24 \ \mu m$	PK elipticin IC ₅₀ = 10,96; 2,85 μm	14, 15)
acyklický prenyl na A-kruhu	licoflavon C	HL-60 HeLa HepG-2 A-549 AGS		PK cisplatina IC ₅₀ = 3,7; 4,9; 12,5; 12,4; 18,8 μm	16)
		H4IIE C6	$IC_{50} = 42 \ \mu mol/l \\ IC_{50} = 37 \ \mu mol/l$	v buňkách H4IIE: indukce apoptosy aktivací kaspasy 3/7	17)
acyklický prenyl na C-kruhu	albanin A	B16	$IC_{50} = 84,7 \ \mu m$		18, 19)
		PC-3	$IC_{50} = 55,6 \ \mu m$	PK doxorubicin $IC_{50} = 0.9 \ \mu m$	20, 1)
cyklický prenyl na A-kruhu	atalantoflavon	HeLa MCF-7 Hep3B	$IC_{50} = 1,25 \ \mu m$ PK deguelin $IC_{50} = 6,54 \ \mu m$ $IC_{50} = 6,4; 5,3;$ $IC_{50} = 4,33 \ \mu m$ 29,3 \ \mu m		21)
		CCRF-CEM CEM/ADR 5000	$IC_{50} = 44,69 \ \mu m$ $IC_{50} = 33,35 \ \mu m$	PK doxorubicin IC ₅₀ = 0,20 a 195,12 μ m	22)
cyklický prenyl na C-kruhu	cyklocommunol	SCC2095 Ca922	$IC_{50} = 4,2 \ \mu m$ $IC_{50} = 5 \ \mu m$	omezení exprese proteinu Mcl-1 a fosforylace Akt/ mTor, zvýšení tvorby ROS, aktivace kaspasy-9 a -3	23, 15)
acyklický geranyl na A-kruhu	8-geranylapigenin	HeLa MCF-7 Hep3B	$IC_{50} = 2,24 \ \mu m$ $IC_{50} = 3,21 \ \mu m$ $IC_{50} = 3,65 \ \mu m$	PK deguelin IC ₅₀ = 6,4; 5,3; 29,3 μ m	21)
acyklický geranyl na B-kruhu	kuwanon S	HeLa MCF-7 Hep3B	$IC_{50} = 1,64 \ \mu m$ $IC_{50} = 7,02 \ \mu m$ $IC_{50} = 8,47 \ \mu m$	PK deguelin $IC_{50} = 6,4; 5,3;$ 29,3 μ m	21)
	3'-geranyl-3- prenyl-2',4',5,7- tetrahydroxyflavon	HeLa MCF-7 Hep3B	$IC_{50} = 1,32 \ \mu m$ $IC_{50} = 3,92 \ \mu m$ $IC_{50} = 5,22 \ \mu m$	PK deguelin $IC_{50} = 6,4; 5,3;$ 29,3 μ m	21)
prenyl i geranyl	sanggenon J	HeLa MCF-7 Hep3B	$IC_{50} = 2,28 \ \mu m$ $IC_{50} = 4,56 \ \mu m$ $IC_{50} = 5,30 \ \mu m$	PK deguelin IC ₅₀ = 6,4; 5,3; 29,3 μ m	21)
	sanggenon K	HeLa MCF-7 Hep3B	$IC_{50} = 2,29 \ \mu m$ $IC_{50} = 3,51 \ \mu m$ $IC_{50} = 3,09 \ \mu m$	PK deguelin IC ₅₀ = 6,4; 5,3; 29,3 μ m	21)

Čes. slov. Farm. 2019; 68, 48–68

		SK-Hep1	5–75 μm	zvýšení exprese E-kadherinu, snížení exprese vimentinu a integrinu α2, α6 a β1, redukce aktivity MMP2 a MMP9, potlačení STAT3 a NF-κB	24, 1)
		НТ-29	$IC_{50} = 6,1 \ \mu m$	indukce apoptosy potlačením NF-κB	25)
		MCF-7 MDA-MB-231 MDA-MB-157 MDA-MB-453 MCF10A	IC ₅₀ 18–45 μm IC ₅₀ 18–45 μm IC ₅₀ 18–45 μm IC ₅₀ 18–45 μm IC ₅₀ > 18–45 μm	snížení exprese proteinu survivin, zvýšení exprese proteinu Bax	26)
	morusin	A2780 SKOV-3 HO-8910	$IC_{50} = 31,64 \ \mu m$ $IC_{50} = 39,09 \ \mu m$ $IC_{50} = 43,18 \ \mu m$	influx vápníku přes napěť ově řízený aniontový kanál do mitochondrií, dilatace ER a mitochondrií, produkce ROS – indukce paraptosy	27)
diprenyl		H1299 H460 H292 H1975	0–50 μm 0–50 μm 0–50 μm 0–50 μm	potlačení signální dráhy EGFR/STAT3	28)
		HeLa	$IC_{50} = 0,94 \ \mu m$	potlačení NF-κB	29)
		DU145 M2182 PC-3 LNCaP RWPE-1	$IC_{50} = 26,27 \ \mu m$ $IC_{50} = 22,19 \ \mu m$ $IC_{50} = 19,97 \ \mu m$ $IC_{50} = 21,89 \ \mu m$ $IC_{50} = 43,48 \ \mu m$	potlačení exprese STAT3	30)
		AsPC-1 BxPC-3 MIA Paca-2 PANC-1	20 μm 20 μm 20 μm 20 μm	potlačení exprese STAT3	31)
		U87MG T98G U373MG U251MG	5, 10 a 20 μm 5, 10 a 20 μm 5, 10 a 20 μm 5, 10 a 20 μm 5, 10 a 20 μm	synergický účinek s proteinem TRAIL, aktivace kaspasy-3, -8 a -9, potlačení exprese proteinu XIAP a survivin, inhibice dráhy EGFR/ PDGFR-STAT3, indukce tvorby receptoru smrti DR5	32)

Substituent	Látka	Buněčná linie	Hodnota účinku	Další informace	Odkaz
		$\begin{array}{c} \text{GBM} \\ \text{GSCs} \\ \text{L02} \end{array} \begin{array}{c} \text{IC}_{50} = 6,87 \ \mu\text{g/ml} \\ \text{IC}_{50} = 3,92 \ \mu\text{g/ml} \\ \text{IC}_{50} = 38,06 \ \mu\text{m} \end{array}$		potlačení exprese proteinu CD133, nestinu, Oct4 a Sox2, zvýšení exprese adipogenních proteinů – PPARγ, adipsin D, ap2, perilipin, snížení exprese proteinu Bcl-2 a zvýšení exprese proteinu Bax a kaspasy-3	33)
	morusin	MKN45 SGC7901	$\begin{array}{c} 1, 2 \text{ a 5 mg/l} \\ 1, 2 \text{ a 5 mg/l} \end{array} \qquad \begin{array}{c} \text{down-regulace CDK} \\ \text{a cyklinu} - \text{CDK2}, \\ \text{CDK4, cyklin D}_1 \\ \text{a cyklin E}_1 \end{array}$		34)
diprenyl		HL-60 HeLa HepG-2 A-549 AGS	$IC_{50} = 16,8 \ \mu m$ $IC_{50} = 19,0 \ \mu m$ $IC_{50} > 40 \ \mu m$ $IC_{50} = 39,0 \ \mu m$ $IC_{50} = 21,7 \ \mu m$	PK cisplatina IC ₅₀ = 3,7; 4,9; 12,5; 12,4; 18,8 μm	16)
		H22	10–40 mg/kg	zvýšení exprese proteinu p53, survivinu, cyklinu B ₁ a snížení exprese genu NF-κB	35)
		SMMC-7721 BGC-823 SGC-7901	IC ₅₀ = 20,6 μ m IC ₅₀ = 12,6 μ m IC ₅₀ = 75,8 μ m	PK cisplatina IC ₅₀ = 6,3; 7,3 a 14,1 μ m	36)
	cudraflavon B	THP-1 LAPC-4 DU-145 PC-3 BPH-1	LD ₅₀ = 24,3 μm 10 a 20 μm 10 a 20 μm 10 a 20 μm 20 a 30 μm	potlačení fosforylace Rb proteinu, inhibice exprese TNF-α, IL-1β, IL-1RA, snížení exprese genů, které jsou pod transkripční kontrolou NF-κB, PK oxaliplatina $IC_{50} = 1,7 \ \mu m$ PK kamptotecin $IC_{50} = 0,2 \ \mu m$	37)

Čes. slov. Farm. 2019; 68, 48–68

	cudraflavon B	HN4 HN12	IC ₅₀ = 18,3 μm IC ₅₀ = 19,5 μm	PK cisplatina $IC_{50} = 24,3 a 20,4 \mu m$ zvýšení exprese proteinu Bax, snížení exprese proteinu Bcl-2, uvolnění cytochromu C a aktivace kaspas, down-regulace Rb proteinu, zvýšená exprese proteinu p53, p21 a p27	38)
		BGC-823	$IC_{50} = 7,2 \ \mu g/ml$	PK vinkristin IC ₅₀ = 19 μ g/ml	39)
		B16	$IC_{50} = 12,5 \ \mu m$	PK vinblastin $IC_{50} = 50 \ \mu m$	18)
		KB MCF-7 NCI-H187 Vero	$IC_{50} = 25,78 \ \mu m$ $IC_{50} = 34,65 \ \mu m$ $IC_{50} = 35,51 \ \mu m$ $IC_{50} = 29,32 \ \mu m$	PK elipticin IC ₅₀ = 13,48; neaktivní, 10,96 a 2,85 μ m	14)
diprenyl	morusinol	HL-60 HeLa HepG-2 A-549 AGS	$\begin{split} IC_{50} &= 18,2 \ \mu m \\ IC_{50} &> 40 \ \mu m \end{split}$	PK cisplatina IC ₅₀ = 3,7; 4,9; 12,5; 12,4; 18,8 μm	16)
	kuwanon G	A-549 Bel 7402 BGC-823 HCT-8 A2780	$\begin{split} & IC_{50} > 10 \ \mu g/ml \\ & IC_{50} > 10 \ \mu g/ml \end{split}$	PK 5-fluorouracil IC ₅₀ = 0,2; 0,5; 0,7; 0,5 a 0,7 μ g/ml	40, 1)
	cyklomorusin	HeLa MCF-7 Hep3B	IC ₅₀ = 1,66 μm IC ₅₀ = 7,85 μm IC ₅₀ = 7,55 μm	PK deguelin IC ₅₀ = 6,4; 5,3; 29,3 μ m	21)
		HeLa	$IC_{50} < 10 \ \mu g/ml$		41, 15)
	neocyklomorusin	CCRF-CEM CEM/ADR 5000	$IC_{50} = 59,02 \ \mu m$ $IC_{50} = 69,98 \ \mu m$	PK doxorubicin IC ₅₀ = 0,20 a 195,12 μ m	22)
	cyklomulberrin	HeLa MCF-7 Hep3B	$IC_{50} = 3,69 \ \mu m$ $IC_{50} = 7,19 \ \mu m$ $IC_{50} = 6,64 \ \mu m$	PK deguelin IC ₅₀ = 6,4; 5,3; 29,3 μ m	21)
	kuwanon C	B16	$IC_{50} = 14,2 \ \mu m$	PK vinblastin $IC_{50} = 50 \ \mu m$	18, 42)
	kuwanon C	P388	$IC_{50} = 14,0 \ \mu m$		43)

Substituent	Látka	Buněčná linie	Hodnota účinku	Další informace	Odkaz
		A375.S2	$IC_{50} = 3,42 \ \mu m$	produkce ROS, aktivace MAPK, zvýšení exprese proapoptotických proteinů (Puma, Bax, Bad, Bid), aktivace kaspasy-9 a 3/7	44, 15)
		B16	$IC_{50} = 9,2 \ \mu m$	PK vinblastin $IC_{50} = 50 \ \mu m$	18)
	cudraflavon C	SMMC-7721 BGC-823 SGC-7901	IC ₅₀ = 11,8 μm IC ₅₀ = 24,9 μm IC ₅₀ = 35,5 μm	PK cisplatina IC ₅₀ = 6,3; 7,3 a 14,1 μ m	36)
		P388	$IC_{50} = 4,50 \ \mu m$		45)
diprenyl		KM12 Caco-2 HT-29 HCC2998 SW48 HCT116 CCD 841 Con	$IC_{50} = 7,77 \ \mu m$ $IC_{50} = 9,01 \ \mu m$ $IC_{50} = 16,88 \ \mu m$ $IC_{50} = 22,18 \ \mu m$ $IC_{50} = 24,74 \ \mu m$ $IC_{50} = 34,67 \ \mu m$ $IC_{50} > 100 \ \mu m$	inhibice signalizace PI3K-AKT, aktivace vnitřní kaspázové dráhy, up-regulace genu EGR1, HUWE1 a SMG1, down-regulace genu MYB1, CCNB1 a GPX2	46)
	kuwanon A	RAW 264,7	$IC_{50} = 10,5 \ \mu m$	inhibice produkce NO	47)
	kuwanon T	RAW 264,7	$IC_{50} = 10,0 \ \mu m$	inhibice produkce NO	47)
	3',8-diprenyl-4',5,7- -trihydroxyflavon	HeLa MCF-7 Hep3B	$IC_{50} = 1,66 \ \mu m$ $IC_{50} = 5,27 \ \mu m$ $IC_{50} = 4,71 \ \mu m$	PK deguelin $IC_{50} = 6,4; 5,3;$ 29,3 µm	21)
	artonin I	HL-60 HeLa HepG-2 A-549 AGS	$\frac{IC_{50} > 40 \ \mu m}{IC_{50} > 40 \ \mu m}$ $\frac{IC_{50} > 40 \ \mu m}{IC_{50} > 40 \ \mu m}$ $\frac{IC_{50} > 40 \ \mu m}{IC_{50} > 40 \ \mu m}$	PK cisplatina IC ₅₀ = 3,7; 4,9; 12,5; 12,4; 18,8 μm	16)
triprenyl	kuwanon H	SCLC	Ki = 290 nm	antagonistický účinek na receptor pro peptid uvolňující gastrin	48, 1)

Čes. slov. Farm. 2019; 68, 48–68

Tab. 2. Prenylované flavanony

Substituent	Látka	Buněčná linie	Hodnota účinku	Další informace	Odkaz
	sanggenon F	RAW 264,7	$IC_{50} = 19,0 \ \mu m$ inhibice produkce NO		47)
cyklický prenyl na B-kruhu	kuwanon L	Molt3	200 µm	inhibice proteinu XIAP vazbou na jeho doménu BIR3	49, 50)
acyklický prenyl na A-kruhu	euchrenon a ₇	PC-3 NCI-H460 A-549	$\begin{split} & IC_{50} = 17,0 \; \mu mol/l \\ & IC_{50} = 47,4 \; \mu mol/l \\ & IC_{50} = 35,2 \; \mu mol/l \end{split}$	PK doxorubicin IC ₅₀ = 0,2; 0,3 a 0,5 μ mol/l	51, 52)
		P388	$IC_{50} = 7,8 \ \mu g/ml$	norartocarpanon $IC_{50} = 12,7 \ \mu g/ml$	53)
acyklický geranyl na A-kruhu	7,2',4',6' -tetrahydroxy-6- -geranylflavanon	dRLh84	$IC_{50} = 52,8 \ \mu g/ml$		54)
		RAW 264,7	$IC_{50} = 14,9 \ \mu m$	inhibice produkce NO	47)
	kuwanon E	THP-1	LD ₅₀ > 50 μm	inhibice exprese TNF- α a interleukinu-1, potlačení fosforylace Rb proteinu, PK oxaliplatina LD ₅₀ = 1,7 μ m	37)
B-kruhu		CEM RPMI8226 U266	$IC_{50} = 15,4 \ \mu m$ $IC_{50} = 16,4 \ \mu m$ $IC_{50} = 42,2 \ \mu m$		55)
	kuwanon U	THP-1	$LD_{50} = 45,7 \ \mu m$	PK oxaliplatina LD ₅₀ = 1,7 μm	37)
		CEM RPMI8226 U266 THP-1	$\begin{split} IC_{50} &= 18,5 \ \mu m \\ IC_{50} &= 26,8 \ \mu m \\ IC_{50} &= 56,3 \ \mu m \\ IC_{50} &= 28,0 \ \mu m \end{split}$		55)
		MDA-MB-213 SW60 ACHN	$IC_{50} = 24,0 \ \mu mol/l \\ IC_{50} = 10,96 \ \mu mol/l \\ IC_{50} = 13,44 \ \mu mol/l$	inhibice heparinasy $(IC_{50} = 3,7 \ \mu mol/l)$	56)
	sanggenon G	Molt3	vazebná afinita 34,26 µm	inhibice proteinu XIAP vazbou na jeho doménu BIR3, aktivace kaspasy-9, -8 a -3	49)
cyklický geranyl na A-kruhu	conggonal I	HL-60 HeLa HepG-2 A-549 AGS	$\begin{split} IC_{50} &= 17,7 \ \mu m \\ IC_{50} &= 16,4 \ \mu m \\ IC_{50} &= 16,7 \ \mu m \\ IC_{50} &= 14,8 \ \mu m \\ IC_{50} &= 15,7 \ \mu m \end{split}$	PK cisplatina IC ₅₀ = 3,7; 4,9; 12,5; 12,4; 18,8 μm	16)
	sanggenol L	A2780 SKOV-3 OVCAR-3	$IC_{50} = 16,7 \ \mu m$ $IC_{50} = 16,2 \ \mu m$ $IC_{50} = 30,4 \ \mu m$	potlačení exprese cyklinu D ₁ , aktivace kaspasy-9 a -3, inhibice NF-κB	57)

Substituent	Látka	Buněčná linie	Hodnota účinku	Další informace	Odkaz
		PC-3	IC ₅₀ = 18,76 μmol/l	aktivace kaspasy-9 a -3	58)
		Lovo HT-29 SW480	5–80 μm 5–80 μm 5–80 μm	zvýšení tvorby ROS, zvýšení hladiny intracelulárního Ca ²⁺ a ATP, inhibice produkce NO, snížení exprese proteinu Bcl-2	59)
	C.	RAW 264,7	$IC_{50} = 2,82 \ \mu m$ $IC_{50} = 3,38 \ \mu m$	inhibice produkce NO, inhibice NF-κB	60)
	sanggenon C	H22 P388 K562	$IC_{50} = ~15 \ \mu m$ $IC_{50} = ~15 \ \mu m$ $IC_{50} = ~15 \ \mu m$	inhibice proteazomu, zástava buněčného cyklu ve fázi G ₀ /G ₁	61)
		HSC-2 HSG HGF	$CC_{50} = 18 \ \mu m$ $CC_{50} = 23 \ \mu m$ $CC_{50} = 45 \ \mu m$	PK 2'-hydroxychalkon $CC_{50} = 58; 49$ a 110 μ m	62)
		Нер3В	$\begin{split} IC_{50} &= 1,26 \ \mu m \\ IC_{50} &= 3,20 \ \mu m \\ IC_{50} &= 1,26 \ \mu m \end{split}$	inhibice HIF-1α, inhibice VEGF, potlačení životaschopnosti	63)
diprenyl	sanggenon B	HSC-2 HSG HGF	$CC_{50} = 39 \ \mu m$ $CC_{50} = 47 \ \mu m$ $CC_{50} = 98 \ \mu m$	PK 2'-hydroxychalkon $CC_{50} = 58; 49$ a 110 μ m	62, 64)
		HSC-2 HSG HGF	$CC_{50} = 73 \ \mu m$ $CC_{50} = 100 \ \mu m$ $CC_{50} = 140 \ \mu m$	PK 2'-hydroxychalkon $CC_{50} = 58; 49$ a 110 μ m	62)
	sanggenon O	RAW 264,7	$\begin{array}{l} IC_{_{50}}=1,15 \ \mu m \\ IC_{_{50}}=1,29 \ \mu m \end{array}$	inhibice produkce NO, inhibice NF-κB	60)
		Нер3В	$\begin{split} IC_{50} &= 1,03 \ \mu m \\ IC_{50} &= 2,08 \ \mu m \\ IC_{50} &= 8,75 \ \mu m \end{split}$	inhibice HIF-1α, inhibice VEGF, potlačení životaschopnosti	63)
	sanggenon A	HSC-2 HSG HGF	$CC_{50} = 53 \ \mu m$ $CC_{50} = 46 \ \mu m$ $CC_{50} = 110 \ \mu m$	PK 2'-hydroxychalkon $CC_{50} = 58; 49$ a 110 μ m	62, 65)
	sanggenon D	HSC-2 HSG HGF	$CC_{50} = 44 \ \mu m$ $CC_{50} = 64 \ \mu m$ $CC_{50} = 140 \ \mu m$	PK 2'-hydroxychalkon $CC_{50} = 58; 49$ a 110 μ m	62, 66)
	sanggenol Q	H460 A-549 H1299	10–60 μg/ml 10–60 μg/ml 10–60 μg/ml	aktivace kaspasy-9 a -3 inhibice proteinu Bcl-2 a XIAP	67, 16)

Čes. slov. Farm. 2019; 68, 48–68

Tab. 3. Prenylované chalkony

Substituent	Látka	Buněčná linie	Hodnota účinku	Další informace	Odkaz
	morachalkon A	P388	$IC_{50} = 17,8 \ \mu m$		43, 42)
	morachalkon B	HCT-8 BGC-823 $IC_{50} = 6,4 \ \mu g/ml$ $IC_{50} = 5,7 \ \mu g/ml$			68)
	morachalkon C	HCT-8 BGC-823	$IC_{50} = 9,4 \ \mu g/ml$ $IC_{50} = 8,3 \ \mu g/ml$		68)
		PC-3	$IC_{50} = 26,19 \ \mu m$	vazba na thioredoxin reduktasu 1, zvýšení hladiny ROS	69, 42)
		Tca8113 20 a 40 μm	20 a 40 µm	snížení exprese MMP-2 a -9, defosforylace kinasy Akt a ERK, down-regulace proteinu Bcl-2, up-regulace Bax	70)
	isobavachalkon	MGC803	$IC_{50} = 49,68 \ \mu m$	inhibice drah Akt a ERK, down-regulace Bcl-2, up-regulace Bax, aktivace kaspasy-3	71)
acyklický prenyl na A-kruhu		CCRF-CEM CEM/ADR 5000	$IC_{50} = 2,90 \ \mu m$ $IC_{50} = 3,73 \ \mu m$	PK doxorubicin IC ₅₀ = 0,20 a 195,12 μm	72)
		HeLa	25 a 50 μm	kombinace s proteinem TRAIL, zvýšená exprese receptoru DR5	73)
		Н929	10–40 μm	souběžná aplikace chlorochinu vede k aktivaci proteinkinasy C, kaspasy-9 a -3	74)
		OVCAR-8 PC-3 MCF-7 A-549 L-02 HUVEC	$IC_{50} = 7,92 \ \mu m$ $IC_{50} = 15,06 \ \mu m$ $IC_{50} = 28,29 \ \mu m$ $IC_{50} = 32,20 \ \mu m$ $IC_{50} = 31,61 \ \mu m$ $IC_{50} = 31,30 \ \mu m$	inhibice Akt	75)
		IMR-32 NB-39	$IC_{50} = 5,61 \ \mu m$ $IC_{50} = 6,22 \ \mu m$	up-regulace proteinu Bax, aktivace kaspasy-9 a -3	76)

Substituent	Látka	Buněčná linie	Hodnota účinku	Další informace	Odkaz
	kuwanon J 2,4,10''- -trimethylether	HeLa	$IC_{50} = 4,65 \ \mu m$	inhibice NF-κB, PK celastrol $IC_{50} = 4,1 \ \mu m$	77)
	kuwanon R	HeLa	$IC_{50} = 7,38 \ \mu m$	inhibice NF- κ B, PK celastrol IC ₅₀ = 4,1 μ m	77)
		Нер3В	$\begin{split} IC_{_{50}} &= 3,17 \; \mu m \\ IC_{_{50}} &= 3,51 \; \mu m \\ IC_{_{50}} &= 6,42 \; \mu m \end{split}$	inhibice HIF-1α, inhibice VEGF, potlačení životaschopnosti	63)
diprenyl	kuwanon J	Нер3В	$\begin{split} IC_{50} &= 4,10 \ \mu m \\ IC_{50} &= 3,14 \ \mu m \\ IC_{50} &= 8,55 \ \mu m \end{split}$	inhibice HIF-1α, inhibice VEGF, potlačení životaschopnosti	63, 1)
	kuwanon Q	Нер3В	$IC_{50} = 3,80 \ \mu m$ $IC_{50} = 4,24 \ \mu m$ $IC_{50} = 5,94 \ \mu m$	inhibice HIF-1α, inhibice VEGF, potlačení životaschopnosti	63, 11)
	kuwanon V	Нер3В	$IC_{50} = 8,32 \ \mu m$ $IC_{50} = 7,84 \ \mu m$ $IC_{50} = 9,54 \ \mu m$	inhibice HIF-1α, inhibice VEGF, potlačení životaschopnosti	63, 11)

Tab. 4. Diels-Alderovy adukty chalkonu a dehydroprenyl-2-arylbenzofuranu

Substituent	Látka	Buněčná linie	Hodnota účinku	Další informace	Odkaz
		HL-60 HeLa HepG-2 A-549 AGS	$ \begin{array}{c c} IC_{50} = 3,4 \ \mu m \\ IC_{50} = 9,6 \ \mu m \\ IC_{50} = 14,4 \ \mu m \\ IC_{50} = 15,3 \ \mu m \\ IC_{50} = 3,5 \ \mu m \end{array} \begin{array}{c} PK \ cisplatina \\ IC_{50} = 3,7; \ 4,9; \ 12,5; \\ 12,4; \ 18,8 \ \mu m \end{array} $		16)
	mulberrofuran G	HL-60 CRL1579	$ \begin{array}{c} 60 \\ L1579 \end{array} IC_{50} = 1,7 \ \mu m \\ IC_{50} = 9,8 \ \mu m \end{array} \begin{array}{c} PK c \\ IC_{50} = 1,7 \ \mu m \\ IC_{50} = 9,8 \ \mu m \end{array} $	PK cisplatina $IC_{50} = 1.9 \ \mu m$ $IC_{50} = 21.1 \ \mu m$ aktivace kaspasy -3, -8,-9,-2, zvýšení poměru Bax/Bcl-2	78)
prenyl		A-549 BGC-823 HCT-8 A2780 Bel 7402	$\begin{array}{l} IC_{50} = 5,2 \; \mu g/ml \\ IC_{50} = 5,7 \; \mu g/ml \\ IC_{50} = 8,9 \; \mu g/ml \\ IC_{50} = 5,0 \; \mu g/ml \\ IC_{50} > 10 \; \mu g/ml \end{array}$	PK 5-fluorouracil IC ₅₀ = 0,2; 0,7; 0,5; 0,7 a 0,5 μ g/ml	40)
		Нер3В	$IC_{50} = 2,60 \ \mu m$ $IC_{50} = 28,6 \ \mu m$	inhibice HIF-1α inhibice VEGF	63)
	mulberrofuran C	HL-60 HeLa HepG-2 A-549 AGS	$\begin{array}{l} IC_{50} > 40 \ \mu m \\ IC_{50} > 40 \ \mu m \end{array}$	PK cisplatina IC ₅₀ = 3,7; 4,9; 12,5; 12,4; 18,8 μm	16)

Čes. slov. Farm. 2019; 68, 48–68

	mulberrofuran J	HL-60 HeLa HepG-2 A-549 AGS		PK cisplatina IC ₅₀ = 3,7; 4,9; 12,5; 12,4; 18,8 μm	16)
	mongolioin C	HL-60 HeLa HepG-2 A-549 AGS		PK cisplatina IC ₅₀ = 3,7; 4,9; 12,5; 12,4; 18,8 μm	16)
	mongolicin C	A-549 Bel 7402 BGC-823 HCT-8 A2780	$\begin{array}{l} {\rm IC}_{50}=6,6\ \mu g/ml\\ {\rm IC}_{50}=7,2\ \mu g/ml\\ {\rm IC}_{50}=6,1\ \mu g/ml\\ {\rm IC}_{50}=6,7\ \mu g/ml\\ {\rm IC}_{50}=6,0\ \mu g/ml \end{array}$	PK fluorouracil IC ₅₀ = 0,2; 0,5; 0,7; 0,5 a 0,7 μg/ml	40)
prenyl	australisin C	A-549 Bel 7402 BGC-823 HCT-8 A2780	$\begin{array}{c} {\rm IC}_{50} > 10 \ \mu g/ml \\ {\rm IC}_{50} = 8,5 \ \mu g/ml \end{array}$	PK fluorouracil IC ₅₀ = 0,2; 0,5; 0,7; 0,5 a 0,7 μg/ml	40, 65)
	mulberrofuran Q	HL-60 CRL1579	$IC_{50} = 37.6 \ \mu m$ $IC_{50} = 83.9 \ \mu m$	PK cisplatina $IC_{50} = 1,9 \ \mu m$ $IC_{50} = 21,1 \ \mu m$ aktivace kaspasy -3,-8,-9,-2 a zvýšení poměru Bax/Bcl-2	78)
		A-549 Bel 7402 BGC-823 HCT-8 A2780	$\begin{array}{l} {\rm IC}_{50} > 10 \ \mu g/ml \\ {\rm IC}_{50} > 10 \ \mu g/ml \end{array}$	PK fluorouracil IC ₅₀ = 0,2; 0,5; 0,7; 0,5 a 0,7 μ g/ml	40)
	mulberrofuran F	A-549 Bel 7402 BGC-823 HCT-8 A2780	$\begin{split} & IC_{50} = 4.9 \; \mu g/ml \\ & IC_{50} = 4.8 \; \mu g/ml \\ & IC_{50} = 5.7 \; \mu g/ml \\ & IC_{50} = 4.7 \; \mu g/ml \\ & IC_{50} = 4.6 \; \mu g/ml \end{split}$	PK fluorouracil IC ₅₀ = 0,2; 0,5; 0,7; 0,5 a 0,7 μ g/ml	40, 42)
	mulberrofuran E	A-549 Bel 7402 BGC-823 HCT-8 A2780	$\begin{split} & IC_{50} = 5.8 \ \mu g/ml \\ & IC_{50} = 6.6 \ \mu g/ml \\ & IC_{50} = 5.9 \ \mu g/ml \\ & IC_{50} = 6.7 \ \mu g/ml \\ & IC_{50} = 5.7 \ \mu g/ml \end{split}$	PK fluorouracil IC ₅₀ = 0,2; 0,5; 0,7; 0,5 a 0,7 μ g/ml	40, 79)
diprenyl		A-549 Bel 7402 BGC-823 HCT-8 A2780	$\begin{split} & IC_{50} = 5,5 \ \mu g/ml \\ & IC_{50} = 5,6 \ \mu g/ml \\ & IC_{50} = 5,6 \ \mu g/ml \\ & IC_{50} = 7,0 \ \mu g/ml \\ & IC_{50} = 5,7 \ \mu g/ml \end{split}$	PK fluorouracil IC ₅₀ = 0,2; 0,5; 0,7; 0,5 a 0,7 μ g/ml	40, 42)
	chalkomoracin	PC-3 MDA-MB-231	$IC_{50} = 6.0 \ \mu m$ $IC_{50} = 6.0 \ \mu m$	indukce paraptosy potlačením exprese proteinu AIP1/Alix, zvýšená tvorba ROS, zvýšená exprese PINK1	80)
	yunanensin A	A-549 Bel 7402 BGC-823 HCT-8 A2780	$\begin{array}{l} IC_{50}=0,922\ \mu g/ml\\ IC_{50}=5,387\ \mu g/ml\\ IC_{50}=0,863\ \mu g/ml\\ IC_{50}=5,378\ \mu g/ml\\ IC_{50}=2,384\ \mu g/ml \end{array}$		81, 82)

Prenylované stilbeny

Tab. 5.	Diels-Alderovv	aduktv	chalkonu a	dehvdro	prenvlstilbenu

Substituent	Látka	Hodnota účinku	Další informace	Odkaz
prenyl	kuwanon Y	$IC_{50} = 15 \ \mu mol/l$	inhibice proteinkinasy C	83)

Diskuze

V práci jsou popsány a hodnoceny cytotoxické a antiproliferativní účinky prenylovaných fenolů izolovaných z moruše bílé. Z celkového souboru 113 prenylovaných fenolů tvořily největší část hodnocených látek prenylované flavony, dále v sestupném pořadí prenylované flavanony, Diels-Alderovy adukty chalkonu a dehydroprenyl-2-arylbenzofuranu, prenylované chalkony a nakonec prenylované stilbeny. Cytotoxickou aktivitu vykázalo 57 látek, přičemž kořenová kůra moruše bílé představuje hlavní zdroj prenylovaných fenolů a také je poměrně velké množství těchto látek zastoupeno v listech stromu *Morus alba*.

Moraceae je jednou z nejbohatších čeledí na prenylované flavonoidy¹⁰. Prenylovaný postranní řetězec, který může být různě modifikován, zvyšuje lipofilitu látek, čímž zlepšuje jejich prostupnost biologickými membránami a vede tak ke zvýšení biologické dostupnosti⁹.

Prenylovaný postranní řetězec v mnohých případech zlepšuje i biologickou aktivitu, což bylo prokázáno studií na buněčné linii melanomu B16, kde cytotoxická aktivita rostla se vzrůstajícím počtem prenylových skupin18). Nejsilnější cytotoxický účinek vykázaly látky obsahující ve své struktuře dva prenylované postranní řetězce, ke kterým patřily cudraflavon C, cudraflavon B a kuwanon C. Podíváme-li se detailněji na struktury těchto tří látek, můžeme konstatovat, že cytotoxickou aktivitu ovlivňují i hydroxylové skupiny ve specifických polohách. Cudraflavon C s nejnižší hodnotou inhibiční koncentrace $(IC_{50} = 9,2 \ \mu m)$ má acyklické prenylové skupiny navázány v polohách C-3 a C-6. Cudraflavon B také obsahuje prenylové skupiny v polohách C-3 a C-6, avšak v poloze C-6 došlo k cyklizaci prenylu se sousední hydroxylovou skupinou, což je pravděpodobně důvodem nižší cytotoxické aktivity cudraflavonu B (IC₅₀ = 12,5 μ m) v porovnání s cytotoxickou aktivitou cudraflavonu C. Kuwanon C vykázal z těchto tří látek nejvyšší hodnotu inhibiční koncentrace (IC₅₀ = 14,2 μ m), což bude s největší pravděpodobností způsobeno substitucí acyklickými prenylovými skupinami v polohách C-3 a C-8.

V této studii byl také testován albanin A, který obsahuje jeden acyklický prenylovaný řetězec v poloze C-3. Hodnota inhibiční koncentrace albaninu A ($IC_{50} = 84,7 \mu m$) se již velmi výrazně lišila od hodnot inhibičních koncentrací diprenylovaných flavonů. Tato studie také naznačuje, že látka obsahující acyklickou prenylovou skupinu v poloze C-6 vykazuje mnohem silnější cytotoxicitu než látka s acyklickou prenylovou skupinou v poloze C-3. Lze tedy říci, že v případě diprenylovaných flavonů byla nejefektivnější substituce acyklických prenylových skupin v polohách C-3 a C-6, dále efektivita klesala cyklizací jednoho z prenylu se sousedním hydroxylem a nejméně efektivní se zdála být substituce acyklických prenylových skupin v polohách C-3 a C-8¹⁸.

Další studie, která podporuje tvrzení, že prenylovaný postranní řetězec zvyšuje cytotoxický účinek, porovnává cytotoxickou aktivitu 8-prenylapigeninu a apigeninu u nádorové buněčné linie myšího hepatomu H4IIE a myšího gliomu C6, kde hodnota inhibiční koncentrace apigeninu nebyla na rozdíl od 8-prenylapigeninu vůbec stanovena¹⁷⁾. Ke stejnému závěru došel Ferlinahayati et al., kdy C-8 prenylovaný euchrenon a₇ vykázal na buňkách myší lymfocytické leukemie P388 vyšší cytotoxicitu než norartocarpanon, který přítomnost prenylovaného postranního řetězce postrádá⁵³.

Vliv geranylovaného postranního řetězce na cytotoxickou aktivitu uvádí ve své studii i Šmejkal et al. Ukázalo se, že flavanony s geranylovou skupinou v poloze C-6 vykazovaly vyšší cytotoxicitu než flavanony obsahující geranyl v poloze C-3', mezi které patří například kuwanon E nebo kuwanon U. Kromě toho hydroxylace geranylovaného postranního řetězce cytotoxicitu snižuje, stejně jako přítomnost hydroxylové skupiny v poloze C-3⁸⁴).

Nejširší paletu cytotoxických aktivit vykázal jednoznačně morusin, jehož struktura obsahuje prenylovou skupinu v poloze C-8, která podlehla cyklizaci s hydroxylovou skupinou v poloze C-7, a další acyklickou prenylovou skupinu v poloze C-3. U morusinu byly rovněž provedeny tři studie in vivo, v nichž tato látka dokázala snížit plicní kolonizaci buněk hepatocelulárního karcinomu SK-Hep1 u imunodeficietního kmenu myší druhu Nude mice a potlačit růst epiteliálního ovariálního karcinomu a glioblastomu^{24, 27, 33)}. Studie *in vivo* byla provedena i u sanggenonu C ze skupiny prenylovaných flavanonů, kde na myším xenograftovém modelu potlačil růst karcinomu tlustého střeva a zvýšil apoptosu buněk tohoto nádoru⁵⁹⁾. Chalkomoracin je jediným zástupcem Diels-Alderových aduktů chalkonu a dehydroprenyl-2--arylbenzofuranu, který byl prozatím testován in vivo. Na myším xenograftovém modelu prokázal inhibiční účinek na růst karcinomu prsu buněčné linie MDA-MB-23180).

O selektivitě lze v případě prenylovaných flavonů hovořit u cudraflavonu B a cudraflavonu C. Cudraflavon B účinně zastavoval buněčný cyklus lidské monocytární buněčné linie THP-1 ve fázi G_1 , avšak distribuce nenádorové buněčné linie BPH-1 izolované z benigní hyperplazie prostaty zůstala ve všech fázích buněčného cyklu nezměněna, a to i po vystavení vysokým koncentracím cudraflavonu B³⁷⁾. Silný cytotoxický účinek vykázal cudraflavon B u dvou nádorových buněčných linií skvamózního orálního karcinomu HN4 a HN12, avšak vůči nenádorovým lidským orálním keratinocytům cytotoxicitu ve stejné koncentraci neprojevil³⁸⁾. Cudraflavon C by mohl představovat vhodnou molekulu pro studium léčby maligního melanomu A375.S2, protože indukuje apoptosu jeho buněk a zároveň není cytotoxický vůči lidským fibroblastům a keratinocytům⁴⁴⁾. Soo et al. zaznamenal selektivní inhibiční účinek cudraflavonu C na proliferaci buněk kolorektálního karcinomu KM12, Caco-2, HT-29, HCC2998, SW48 a HCT116, nicméně proliferaci epiteliálních kolorektálních buněk CCD CoN 841 cudraflavon C neinhiboval⁴⁶⁾.

Určitá selektivní aktivita byla zjištěna u pěti prenylovaných flavanonů sanggenonu A, B, C, D a O, které prokázaly vyšší cytotoxicitu vůči lidským orálním nádorovým buněčným liniím (HSC-2 a HSG) než vůči nenádorovým lidským gingiválním fibroblastům (HGF)⁶².

Isobavachalkon projevil selektivní účinek hned ve dvou studiích. Nejprve byl potvrzen jeho antiproliferativní účinek u čtyř nádorových buněčných linií OVCAR-8, PC-3, MCF-7 a A-549 (ovariální karcinom, karcinom prostaty, karcinom prsu a karcinom plic) a u dvou nenádorových buněčných linií L-02, HUVEC (jaterní buňky a lidské endoteliální buňky pupečníkové vény). Nicméně silnější antiproliferativní aktivita byla prokázána u nádorových buněčných linií OVCAR-8 a PC-3 ($IC_{50} = 7,92$ a 15,06 μ m), a to z toho důvodu, že tyto dvě nádorové buněčné linie vykazují nadměrnou aktivaci endogenní proteinkinasy B (Akt), kterou isobavachalkon účinně inhibuje⁷⁵). Velmi silný cytotoxický účinek isobavachalkonu byl pozorován u dvou nádorových buněčných linií lidského neuroblastomu IMR-32 a NB-39 ($IC_{50} = 5,61 \text{ a } 6,22 \text{ } \mu\text{m}$), avšak vůči nenádorovým cerebelárním granulárním buňkám cytotoxicky nepůsobil $(IC_{50} > 100 \ \mu m)^{76}$.

Ze studie zkoumající cytotoxicitu desíti prenylovaných flavonů vůči třem nádorovým buněčným liniím HeLa, MCF-7 a Hep3B lze vyhodnotit jako nejefektivnější 3'-geranyl-3-prenyl-2',4',5,7-tetrahydroxyflavon, 8-geranylapigenin a sanggenon K. Všechny tyto tři látky obsahují geranylovaný postranní řetězec, přičemž 3'-geranyl-3-prenyl-2',4',5,7-tetrahydroxyflavon a sanggenon K mají ve své struktuře navázanou i prenylovou skupinu v poloze C-3. Znovu se zde potvrzuje teorie, že substituce geranylovou skupinou v poloze C-8 (8-geranylapigenin) vykazuje vyšší cytotoxicitu vůči nádorovým buněčným liniím MCF-7 a Hep3B, než substituce geranylem v poloze C-3' (kuwanon S). Rozdíl mezi 3'-geranyl-3-prenyl-2',4',5,7-tetrahydroxyflavonem a sanggenonem K je v modifikaci geranylové skupiny v poloze C-3'. V případě 3'-geranyl-3-prenyl-2',4',5,7-tetrahydroxyflavonu je tento geranyl acyklický, avšak sanggenon K má ve své struktuře geranyl cyklický. I zde může být cyklický geranyl příčinou nižší cytotoxické aktivity vůči nádorové buněčné linii HeLa, nicméně vůči nádorovým buněčným liniím MCF-7 a Hep3B vykázal lepší cytotoxicitu právě sanggenon K obsahující geranyl cyklický. Sanggenon K i sanggenon J obsahují geranylovou skupinu v poloze C-3', přesto vyšší cytotoxicitu vykazuje sanggenon K, u kterého dochází k cyklizaci geranylu s hydroxylovou skupinou v poloze C-2' na rozdíl od sanggenonu J, který podléhá cyklizaci s hydroxylem v poloze C-4'. U morusinu, cyklomorusinu a cyklomulberrinu lze konstatovat, že nižší cytotoxická aktivita morusinu a cyklomorusinu vůči MCF-7 a Hep3B může být způsobena cyklizací prenylové skupiny v poloze C-8 se sousedním hydroxylem v poloze C-7, kdežto u cyklomulberrinu k této cyklizaci nedochází²¹⁾.

Qin et al. se zabýval cytotoxickou aktivitou Diels-Alderových aduktů chalkonu a dehydroprenyl-2-arylbenzofuranu, prenylovaných flavanonů a prenylovaných flavonů u nádorových buněčných linií HL-60 (lidská myeloidní leukemie), HeLa (lidský cervikální adenokarcinom), HepG-2 (lidský hepatocelulární karcinom), A-549 (lidský nemalobuněčný karcinom plic) a AGS (lidský adenokarcinom žaludku). Z Diels-Alderových aduktů chalkonu a dehydroprenyl-2-arylbenzofuranu byla určena cytotoxická aktivita pouze u mulberrofuranu G a mongolicinu C. Mulberrofuran G však vykázal vyšší cytotoxický účinek vůči všem pěti nádorovým buněčným liniím, což může být způsobeno přítomností ketalových skupin, kterých mulberrofuran G obsahuje více než mongolicin C. Geranylovaný flavanon sanggenol L vykázal ze všech testovaných látek nejnižší hodnotu inhibiční koncentrace u buněčné linie nemalobuněčného karcinomu plic. Z chemických struktur 3'-geranyl-3-prenyl-2',4',5,7-tetrahydroxyflavonu, morusinu a morusinolu vyplývá již výše uváděný fakt, že cyklizací prenylovaného postranního řetězce klesá cytotoxická aktivita. Morusin a morusinol jsou diprenylované flavony lišící se modifikací prenylu v poloze C-3. Morusin má ve své struktuře navázaný acyklický prenyl v poloze C-3, ale morusinol obsahuje v poloze C-3 prenyl cyklický, a právě proto morusin vykazuje vyšší cytotoxickou aktivitu. Naopak 3'-geranyl-3-prenyl-2',4',5,7-tetrahydroxyflavon vykazuje vyšší cytotoxicitu než morusin, protože je jeho prenylovaný i geranylovaný řetězec acyklický. Pozoruhodné je, že licoflavon C prokázal nejvyšší cytotoxicitu ze všech testovaných prenylovaných flavonů u nádorových buněčných linií HL-60 (IC₅₀ = 7,0 ± 1,3 μ m) a HepG-2 (IC₅₀ = 10,2 \pm 0,9 μ m), a to i přesto, že ve své struktuře obsahuje pouze jeden acyklický prenylovaný postranní řetězec v poloze C-816).

Licoflavon C a cudraflavon B byly testovány vůči nádorovým buněčným liniím KB (lidský orální karcinom), MCF-7 (karcinom prsu) a NCI-H187 (karcinom plic) a vůči nenádorové buněčné linii Vero (ledvinné fibroblasty získané z afrického kočkodana zeleného). Diprenylovaný cudraflavon B vykázal cytotoxicitu u všech testovaných buněčných linií, zatímco licoflavon C obsahující jednu prenylovou skupinu vykázal cytotoxicitu pouze u buněk karcinomu plic a Vero. To na první pohled působí, že dva prenylované postranní řetězce cudraflavonu B zlepšují jeho cytotoxickou aktivitu. Když však porovnáme jejich jednotlivé hodnoty inhibičních koncentrací, zjistíme, že u licoflavonu C byla naměřena nižší hodnota inhibiční koncentrace vůči buňkám karcinomu plic než u cudraflavonu B a zároveň licoflavon C prokázal žádoucí nižší cytotoxicitu vůči nenádorovým buňkám Vero14).

Existují však i další studie, ve kterých neplatí tvrzení, že cyklizace prenylové skupiny se sousední hydroxylovou skupinou snižuje cytotoxickou aktivitu, například při testování morusinu a kuwanonu C na buňkách myší lymfocytické leukemie P388. Přestože morusin ve své struktuře obsahuje jeden acyklický a jeden cyklický prenylovaný řetězec, vykázal vyšší cytotoxickou aktivitu než kuwanon C, který má ve své struktuře navázány dva acyklické prenyly ve stejných polohách jako morusin. Dále byl testům cytotoxicity podroben i prenylovaný chalkon morachalkon A, který ze všech tří testovaných látek vykázal nejnižší cytotoxicitu⁴³.

Studie testující cytotoxickou aktivitu devíti Diels--Alderových aduktů chalkonu a dehydroprenyl-2-arylbenzofuranu vůči nádorovým buněčným liniím A-549 (lidský nemalobuněčný karcinom plic), Bel 7402 (lidský hepatocelulární karcinom), BGC-823 (karcinom žaludku), HCT-8 (lidský kolorektální karcinom) a A2780 (lidský ovariální karcinom) došla k závěru, že nejvyšší cytotoxicity dosáhl yunanensin A, v jehož struktuře jsou přítomné ketalové skupiny, a dva prenylované postranní řetězce, z nichž jeden podléhá cyklizaci se sousedním hydroxylem a druhý se podílí na 4+2 cykloadici, ze které však nevzniká cyklohexen, nýbrž benzen. O něco menší cytotoxicitu vykázal mulberrofuran F, který ve své struktuře také obsahuje ketalové skupiny i dva prenylované postranní řetězce, z nichž je jeden acyklický a druhý se účastní 4+2 cykloadice. Jak již bylo řečeno, cyklizace prenylovaného postranního řetězce by měla cytotoxicitu snižovat, což však v tomto případě neplatí. Ve struktuře yunanensinu A může cytotoxicitu ovlivňovat benzenový kruh místo cyklohexenového. Dále téměř stejnou cytotoxickou aktivitu vykázaly chalkomoracin a mulberrofuran E. Tyto dvě látky jsou strukturálně velmi podobné, obě obsahují dva prenylované postranní řetězce, avšak chalkomoracin disponuje jednou hydroxylovou skupinou navíc, což bude pravděpodobně důvodem jeho vyšší cytotoxicity. Velmi podobnou míru cytotoxicity s těmito dvěma látkami prokázal mulberrofuran G, jehož strukturu tvoří ketalové skupiny. Na rozdíl od předchozích dvou látek nevykázal cytotoxicitu u všech nádorových buněčných linií. U mongolicinu C byla zjištěna nižší cytotoxicita než u mulberrofuranu G, protože mulberrofuran G obsahuje více ketalových skupin. Australisin C prokázal nejslabší cytotoxický efekt u nádorové buněčné linie A2780, zatímco mulberrofuran J a Q spolu s prenylovaným flavonem kuwanonem G byly inaktivní. Vzhledem k výsledkům této studie lze konstatovat, že vzrůstající počet prenylovaných postranních řetězců, ketalových skupin a hydroxylových skupin zvyšuje cytotoxický účinek40, 81).

Kikuchi et al. testoval albanol A a mulberrofuran Q u nádorové buněčné linie myeloidní leukemie HL-60 a melanomu CRL1579. Zde albanol A vykázal dokonce vyšší cytotoxickou aktivitu než kontrolní cisplatina. Mulberrofuran Q vykázal naopak jen velmi slabou cytotoxickou aktivitu. Výsledek této studie tedy dokládá fakt, že intenzita cytotoxické aktivity může korelovat s množstvím ketalových skupin⁷⁸.

V některých případech může o cytotoxicitě rozhodovat i konečná konfigurace látek. Například sanggenon C a sanggenon O jsou vzájemnými diastereoizomery, kterým se ve své studii věnoval Dat et al. Zkoumal potlačení životaschopnosti buněk Hep3B a inhibici akumulace HIF-1α (hypoxií indukovaný transkripční faktor) a sekrece vaskulárního endoteliálního růstového faktoru v buňkách této linie. Sanggenon O sice efektivněji inhiboval akumulaci HIF-1α a sekreci vaskulárního endoteliálního růstového faktoru, avšak sanggenon C vykázal silnější cytotoxicitu u buněk Hep3B. Z prenylovaných chalkonů byly těmto testům podrobeny kuwanon J, Q, R a V, přičemž kuwanony J, Q a R vykázaly podobné hodnoty inhibičních koncentrací. Hodnoty inhibičních koncentrací kuwanonu V byly ve všech případech nejvyšší, z čehož vyplývá jeho nejslabší cytotoxický efekt, který může být dán nižším počtem hydroxylových skupin v jeho struktuře63).

K zajímavému závěru došla studie hodnotící kuwanon L a sanggenon B, C, D a G jako inhibitory proteinu XIAP. Sanggenony B, C a D neprokázaly žádnou aktivitu, na rozdíl od sanggenonu G a kuwanonu L. Kuwanon L však v porovnání se sanggenonem G projevil jen velmi malou inhibiční aktivitu, protože sanggenon G vzhledem k vyšší lipofilitě postranního prenylovaného řetězce daleko lépe překonává biologické membrány, čímž efektivně vstupuje do buněk. Aby látka mohla působit jako ligand domény proteinu XIAP, vyžaduje určitou flexibilitu fenylové skupiny (B-kruh) flavonoidního skeletu, což v případě sanggenonu B, C, a D není dodrženo, protože hydroxylová skupina navázaná na B-kruhu flavonoidního skeletu podlehla cyklizaci s C-kruhem⁴⁹).

Závěr

Cílem práce bylo vyhledat v dostupné literatuře prenylované fenoly s cytotoxickou a antiproliferativní aktivitou izolované z *Morus alba* a následně popsat a vyhodnotit souvislosti mezi strukturou těchto látek a jejich účinkem.

Z celkového souboru 113 prenylovaných fenolů byla cytotoxická aktivita zjištěna u 57 látek, které byly nejčastěji izolovány z kořenové kůry moruše bílé. Většina látek s cytotoxickou aktivitou byla odvozena od prenylovaných flavonoidů. Substituce fenolického skeletu prenylovanými postranními řetězci zvyšuje lipofilitu látky a uděluje jí silnou afinitu k biologickým membránám, díky čemuž je látka schopna interagovat s cílovými proteiny v buňce. Prenylované fenoly indukovaly v buňkách apoptosu ovlivňováním exprese proteinů z rodiny Bcl-2 nebo aktivováním klíčových apoptotických enzymů – kaspas.

Výsledky studií potvrdily, že se vzrůstajícím počtem prenylovaných postranních řetězců rostla cytotoxická aktivita, na kterou měly dále vliv i hydroxylové skupiny ve specifických polohách. Ketalové skupiny v kombinaci s prenylovanými postranními řetězci rovněž zvyšovaly cytotoxickou aktivitu. Také se ukázalo, že látky s prenylovou skupinou navázanou na A-kruhu vykazovaly vyšší cytotoxicitu než látky obsahující prenylovou skupinu na B-kruhu nebo C-kruhu. Modifikace prenylovaného postranního řetězce, jako je například hydroxylace, cytotoxicitu naopak snižovala. Jakým způsobem ovlivňuje cyklizace prenylovaného postranního řetězce se sousedním hydroxylem cytotoxickou aktivitu, zůstává nejasné. V některých případech cyklizací prenylové skupiny se sousedním hydroxylem cytotoxicita rostla, v jiných naopak klesala. Geranylované fenoly vykázaly ve studiích vyšší cytotoxicitu než prenylované fenoly, protože geranylová skupina je více lipofilní a umožňuje tak efektivnější vstup do buněk.

Osm prenylovaných fenolů prokázalo selektivní cytotoxický účinek vůči nádorovým buňkám, přičemž vůči nenádorovým buňkám nebyly cytotoxické vůbec, nebo byly méně cytotoxické než k buňkám nádorovým.

Seznam použitých zkratek

Akt	serin-threoninová kinasa
ATP	adenosintrifosfát
BAD	Bcl-2-associated death promoter
BAX	Bcl-2-associated X protein
Bcl-2	B-cell lymphoma
CDK	cyklin-dependentní kinasa
DR5	receptor smrti 5
EGFR	epidermální růstový faktor
ER	endoplazmatické retikulum
ERK	extracelulárně regulovaná kinasa
HIF-1	hypoxií indukovaný transkripční faktor
IC50	střední inhibiční koncentrace
LD50	střední smrtelná dávka
MAPK	mitogenem aktivovaná proteinkinasa
MMP	matrixové metaloproteinasy
NF-κB	jaderný faktor kappa B
NO	oxid dusnatý
PINK1	PTEN-indukované kinasy 1
PI3K	fosfatidylinositol-3-kinasa
РК	pozitivní kontrola
PUMA	p53 upregulated modulator of apoptosis
Rb protein	retinoblastomový protein
ROS	reaktivní formy kyslíku
STAT-3	signální transduktor a aktivátor
	transkripce 3
TNF	tumor nekrotizující faktor
TRAIL	tumor necrosis factor-related apoptosis-
	-inducing ligand
XIAP	X-chromosome-linked inhibitor of apo-
	ptosis protein
VEGF	vaskulární endoteliální růstový faktor
Seznam zkra	tek buněčných linií
AGS	buněčná linie lidského adenokarcinomu
	žaludku
ACHN	buněčná linie lidského renálního adeno-
	karcinomu
AsPC-1	buněčná linie lidského adenokarcinomu
	pankreatu

A-549 buněčná linie lidského nemalobuněčného karcinomu plic

A2780	buněčná linie lidského ovariálního karci- nomu
A375.S2	buněčná linie lidského maligního mela-
BGC-823	buněčná linie lidského karcinomu žalud-
BPH-1	buněčná linie benigní hyperplazie pro-
BxPc-3	buněčná linie lidského adenokarcinomu pankreatu
B16	buněčná linie myšího melanomu
Bel 7402	buněčná linie lidského hepatocelulárního
Caco-2	karcinomu buněčná linie lidského kolorektálního
Ca922	adenokarcinomu buněčná linie lidského orálního skva-
CEM	mózního karcinomu buněčná linie lidské T-lymfoblastické
	leukemie
CEM/ADR 50	00 buněčná linie lidské akutní T-lymfob- lastické leukemie
CCRF-CEM	buněčná linie lidské T-lymfoblastické leukemie
CRL1579	buněčná linie lidského melanomu
C6	buněčná linie myšího gliomu
DU-145	buněčná linie lidského karcinomu pro-
101 101	bun čžná linia hanata salulárníh a kanaina
UKLII64	mu potkana
НСС2998	buněčná linie lidského kolorektálního adenokarcinomu
HCT-8	buněčná linie lidského kolorektálního adenokarcinomu
HCT116	buněčná linie lidského kolorektálního adenokarcinomu
HeLa	buněčná linie lidského cervikálního ade- nokarcinomu
HepG-2	buněčná linie lidského hepatocelulárního
Нер3В	buněčná linie lidského hepatocelulárního
HGF	buněčná linie lidských gingiválních fib- roblastů
HL-60	buněčná linie lidské myeloidní leukemie
HN4	buněčná linie lidského orálního skva-
HN12	buněčná linie lidského metastatického orálního skyamázního karcinomu
HO-8910	buněčná linie lidského ovariálního karci-
HSC-2	buněčná linie lidského orálního skva-
HSG	buněčná linie lidského karcinomu slinné
HT-29	ziazy buněčná linie lidského kolorektálního
	karcınomu
HUVEC	buněčná linie lidských jaterních buněk
H1299	buněčná linie lidského nemalobuněčného
	karcinomu plic

Čes. slov. Farm. 2019; 68, 48–68

H1975	buněčná linie lidského nemalobuněčného karcinomu plic obsahující dvojitou muta-
1100	ci L858R/T790M
Π22	karcinomu
H292	buněčná linie lidského nemalobuněčného karcinomu plic
H4IIE	buněčná linie hepatocelulárního karcino-
H460	mu potkana buněčná linie lidského nemalobuněčného karajnomu plic
Н929	buněčná linie lidského mnohočetného
IMR-32	myelomu buněčná linie lidského neuroblastomu
KB	buněčná linie lidského orálního karci-
KM12	buněčná linie lidského kolorektálního
K562	buněčná linie lidské erytro-megakaryob-
LAPC-4	buněčná linie lidského pokročilého karci-
I NCaP	nomu prostaty buněčná linie lidského androgen-senzi-
Livear	tivního adenokarcinomu prostaty
LoVo	buněčná linie lidského kolorektálního karcinomu
L-02	buněčná linie lidských endoteliálních bu- něk pupečníkové vény
MCF-7	buněčná linie lidského prsního karcino-
MCE10A	lilu huněčná linie lidského prsního epitelu
MDA-MB-157	buněčná linie lidského prsního karci-
MDA-MB-231	nomu buněčná linie lidského prsního karci-
MDA-MB-453	nomu buněčná linie lidského prsního karci-
MGC803	buněčná linie lidského karcinomu ža-
MIA Paca 2	buněčná linie lidského adenokarcinomu
MKN45	buněčná linie lidského adenokarcinomu želudku
M2182	buněčná linie lidského karcinomu
Molt3	buněčná linie lidské akutní T-lymfoblas- tické leukemie
NB-39	buněčná linie lidského neuroblastomu
NCI-H187	buněčná linie lidského malobuněčného
	karcinomu plic
NCI-H460	buněčná linie lidského karcinomu plic
OVCAR-3	bunecná linie lidského ovariálního ade-
OVCAR-8	buněčná linie lidského ovariálního ade-
PANC-1	nokarcinomu buněčná linie lidského adenokarcinomu
PC-3	pankreatu buněčná linie lidského adenokarcinomu prostaty

P388	buněčná linie myší lymfocytické leuke- mie
RPMI8226	buněčná linie lidského mnohočetného myelomu
RAW 264,7	buněčná linie myší leukemie
SCC2095	buněčná linie lidského orálního skva- mózního karcinomu
SCLC	buněčná linie lidského malobuněčného
	karcinomu plic
SGC-7901	buněčná linie lidského karcinomu žalud-
	ku
SKOV-3	buněčná linie lidského ovariálního karci- nomu
SK-Hep1	buněčná linie lidského hepatocelulárního
-	karcinomu
SMMC-7721	buněčná linie lidského hepatocelulárního
	karcinomu
SW48	buněčná linie lidského kolorektálního
	adenokarcinomu
SW480	buněčná linie lidského kolorektálního
	karcinomu
Tca8113	buněčná linie lidského skvamózního kar-
	cinomu jazyku
THP-1	buněčná linie lidské monocytické leuke-
	mie
U266	buněčná linie lidského mnohočetného
	myelomu
Vero	buněčná linie ledvinných fibroblastů zís-
	kaných z afrického kočkodana zeleného

Střet zájmů: žádný.

Literatura

- Chan E., Lye P., Wong S. Review: Phytochemistry, pharmacology, and clinical trials of Morus alba. CJNM 2016; 14(1), 17–30. https://www-sciencedirect-com.katalog.vfu.cz:444/science/artic-le/pii/S187553641630005X
- Kresánek J. Atlas liečivých rastlín a lesných plodov. 3. vyd. Bratislava: Osveta 1988; 400 s.
- Natić M., Dabić D., Papetti A., Fotirić Akšić M., Ognjanov V., Ljubojević M., Tešić Ž. Analysis and characterisation of phytochemicals in mulberry (*Morus alba* L.) fruits grown in Vojvodina, North Serbia. Food Chem. 2015; 171, 128–136. http://linkinghub. elsevier.com/retrieve/pii/S0308814614013260
- Lim T. Edible Medicinal and Non Medicinal Plants: Volume 3, Fruits. Dordrecht Heidelberg London New York: Springer 2012; 399–429. https://epdf.tips/volume-3-fruits.html
- Krishna H., Singh D., Singh R., Kumar L., Sharma B., Saroj P. Morphological and antioxidant characteristics of mulberry (Morus spp.) genotypes. Journal of the Saudi Society of Agricultural Sciences 2018. https://linkinghub.elsevier.com/retrieve/pii/S1658077X18302169
- Yimam M., Jiao P., Hong M., Brownell L., Hyun-Jin Kim, Lee Y., Jia Q. Repeated dose 28-day oral toxicity study of a botanical composition composed of Morus alba and Acacia catechu in rats. Regul. Toxicol. Pharmacol. 2018; 94, 115–123. https://linkinghub.elsevier.com/retrieve/pii/ S0273230018300400

- Kumar V., Chauhan S. Mulberry: Life enhancer. J. Med. Plants Res. 2008; 2(10), 271–278. https://academicjournals.org/article/ article1380526584_Kumar %20and %20Chauhan.pdf
- Šmejkal K. Medicínské využití prenylovaných fenolů. https:// docplayer.cz/71015046-Medicinske-vyuziti-prenylovanych-fenolu-karel-smejkal.html (2013)
- Talhi O. Organic Synthesis of C-Prenylated Phenolic Compounds. Curr. Org. Chem. 2013; 17(10), 1067–1102. https:// www.researchgate.net/publication/236854139_Organic_Synthesis_of_C-Prenylated_Phenolic_Compounds
- Yang X., Jiang Y., Yang J., He J., Sun J., Chen F., Zhang M., Yang B. Prenylated flavonoids, promising nutraceuticals with impressive biological activities. Trends Food Sci. Technol. 2015; 44(1), 93–104. https://linkinghub.elsevier.com/retrieve/pii/ S0924224415000710
- Nomura T., Hano Y., Fukai T. Chemistry and biosynthesis of isoprenylated flavonoids from Japanese mulberry tree. Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci. 2009; 85(9), 391–408. http://joi.jlc. jst.go.jp/JST.JSTAGE/pjab/85.391?from=CrossRef
- Xia C., Tang G., Guo Y., Xu Y., Huang Z., Yin S. Mulberry Diels-Alder-type adducts from Morus alba as multi-targeted agents for Alzheimer's disease. Phytochemistry. 2019; 157, 82–91. https:// linkinghub.elsevier.com/retrieve/pii/S0031942218306988
- Nasir S., Tee J., Rahman N., Chee Ch. Flavonoids from biosynthesis to human health. InTech. 2017; 167–188. http://www. intechopen.com/books/flavonoids-from-biosynthesis-to-humanhealth/biosynthesis-and-biomimetic-synthesis-of-flavonoid-diels-alder-natural-products
- Boonyaketgoson S., Rukachaisirikul V., Phongpaichit S., Trisuwan K. Cytotoxic arylbenzofuran and stilbene derivatives from the twigs of Artocarpus heterophyllus. Tetrahedron Lett. 2017; 58(16), 1585–1589. https://linkinghub.elsevier.com/retrieve/pii/ S0040403917303167
- Guo Y., Tang G., Lou L., Li W., Zhang B., Liu B., Yin S. Prenylated flavonoids as potent phosphodiesterase-4 inhibitors from Morus alba: Isolation, modification, and structure-activity relationship study. Eur. J. Med. Chem. 2018; 144, 758–766. https://linkinghub.elsevier.com/retrieve/pii/ S0223523417310887
- Qin J., Fan M., He J., Wu X., Peng L., Su J., Cheng X., Li Y., Kong L., Li R., Zhao Q. New cytotoxic and anti-inflammatory compounds isolated from Morus alba L. Nat. Prod. Res. 2015; 29(18), 1711–1718. http://www.tandfonline.com/doi/full/10.1080 /14786419.2014.999333
- Wätjen W., Weber N., Lou Y., Wang Z., Chovolou Y., Kampkötter A., Kahl R., Proksch P. Prenylation enhances cytotoxicity of apigenin and liquiritigenin in rat H4IIE hepatoma and C6 glioma cells. Food Chem. Toxicol. 2007; 45(1), 119–124. https:// linkinghub.elsevier.com/retrieve/pii/S0278691506002213
- Arung E., Yoshikawa K., Shimizu K., Kondo R. Isoprenoidsubstituted flavonoids from wood of Artocarpus heterophyllus on B16 melanoma cells: Cytotoxicity and structural criteria. Fitoterapia. 2010; 81(2), 120–123. https://linkinghub.elsevier.com/retrieve/pii/S0367326X09001749
- Zhang Y., Luo J., Wan C., Zhou Z., Kong L. Four New Flavonoids with α-Glucosidase Inhibitory Activities from Morus alba var. tatarica. Chem. Biodivers. 2015; 12(11), 1768–1776. https:// onlinelibrary-wiley-com.katalog.vfu.cz:444/doi/epdf/10.1002/ cbdv.201500005

- Fomani M., Ngeufa Happi E., Nouga Bisoue A., Ndom J., Kamdem Waffo A., Sewald N., Wansi J. Oxidative burst inhibition, cytotoxicity and antibacterial acriquinoline alkaloids from Citrus reticulate (Blanco). Bioorg. Med. Chem. Lett. 2016; 26(2), 306–309. https://linkinghub.elsevier.com/retrieve/pii/ S0960894X15303413
- Dat N., Binh P., Quynh L., Van Minh C., Huong H., Lee J. Cytotoxic prenylated flavonoids from Morus alba. Fitoterapia. 2010; 81(8), 1224–1227. https://linkinghub.elsevier.com/retrieve/ pii/S0367326X10002078
- Kuete V., Sandjo L., Djeussi D., Zeino M., Kwamou G., Ngadjui B., Efferth T. Cytotoxic flavonoids and isoflavonoids from Erythrina sigmoidea towards multi-factorial drug resistant cancer cells. Invest. New Drugs 2014; 32(6), 1053–1062. http://link. springer.com/10.1007/s10637-014-0137-y
- Weng J., Bai L., Ko H., Tsai Y. Cyclocommunol induces apoptosis in human oral squamous cell carcinoma partially through a Mcl-1-dependent mechanism. Phytomedicine. 2018; 39, 25–32. https://linkinghub.elsevier.com/retrieve/pii/ S0944711317301770
- Lin W., Lai D., Lee Y., Chen N., Tseng T. Antitumor progression potential of morusin suppressing STAT3 and NFkB in human hepatoma SK-Hep1 cells. Toxicol. Lett. 2015; 232(2), 490–498. http://linkinghub.elsevier.com/retrieve/pii/S0378427414015069
- Lee J., Won S., Chao C., Wu F., Liu H., Ling P., Lin C., Su C. Morusin induces apoptosis and suppresses NF-κB activity in human colorectal cancer HT-29 cells. Biochem. Biophys. Res. Commun. 2008; 372(1), 236–242. http://linkinghub.elsevier.com/ retrieve/pii/S0006291X08009285
- Kang S., Kim E., Kim S., Lee J., Ahn K., Yun M., Lee S. Morusin induces apoptosis by regulating expression of Bax and Survivin in human breast cancer cells. Oncol. Lett. 2017; 13(6), 4558–4562. https://www.spandidos-publications.com/10.3892/ ol.2017.6006
- Xue J., Li R., Zhao X., Ma C., Lv X., Liu L., Liu P. Morusin induces paraptosis-like cell death through mitochondrial calcium overload and dysfunction in epithelial ovarian cancer. Chem.-Biol. Interact. 2018; 283, 59–74. https://linkinghub.elsevier.com/ retrieve/pii/S0009279717311924
- Park H., Min T., Chi G., Choi Y., Park S. Induction of apoptosis by morusin in human non-small cell lung cancer cells by suppression of EGFR/STAT3 activation. Biochem. Biophys. Res. Commun. 2018; 505(1), 194–200. https://linkinghub.elsevier.com/retrieve/pii/S0006291X18320102
- Wang L., Guo H., Yang L., Dong L., Lin C., Zhang J., Lin P., Wang X. Morusin inhibits human cervical cancer stem cell growth and migration through attenuation of NF-κB activity and apoptosis induction. Mol. Cell. Biochem. 2013; 379(1–2), 7–18. http://link.springer.com/10.1007/s11010-013-1621-y
- 30. Lim S., Park S., Kang S., Park D., Kim S., Um J., Jang H., Lee J., Jeong C., Jang J., Ahn K., Lee S. Morusin induces cell death through inactivating STAT3 signaling in prostate cancer cells. Am. J. Cancer Res. 2015; 5(1), 289–300. http://www.ajcr.us/ files/ajcr0003469.pdf
- 31. Kim C., Kim J., Oh E., Nam D., Lee S., Lee J., Kim S., Shim B., Ahn K. Blockage of STAT3 Signaling Pathway by Morusin Induces Apoptosis and Inhibits Invasion in Human Pancreatic Tumor Cells. Pancreas. 2016; 45(3), 409–419. http://Insights. ovid.com/crossref?an=00006676-201603000-00015

- 32. Park D., Ha I., Park S., Choi M., Lim S., Kim S., Lee J., Ahn K., Yun M., Lee S. Morusin Induces TRAIL Sensitization by Regulating EGFR and DR5 in Human Glioblastoma Cells. J. Nat. Prod. 2016; 79(2), 317–323. http://pubs.acs.org/doi/10.1021/acs. jnatprod.5b00919
- 33. Guo H., Liu C., Yang L., Dong L., Wang L., Wang Q., Li H., Zhang J., Lin P., Wang X. Morusin inhibits glioblastoma stem cell growth in vitro and in vivo through stemness attenuation, adipocyte transdifferentiation, and apoptosis induction. Mol. Carcinog. 2016; 55(1), 77–89. http://doi.wiley.com/10.1002/mc.22260
- 34. Wang F., Zhang D., Mao J., Ke X., Zhang R., Yin C., Gao N., Cui H. Morusin inhibits cell proliferation and tumor growth by down-regulating c-Myc in human gastric cancer. Oncotarget. 2017; 8(34), 57187–57200. https://www.researchgate.net/publication/318437337_Morusin_inhibits_cell_proliferation_and_tumor_growth_by_downregulating_c-Myc_in_human_gastric_cancer
- Wan L., Ma B., Zhang Y. Preparation of morusin from Ramulus mori and its effects on mice with transplanted H 22 hepatocarcinoma. BioFactors 2014; 40(6), 636–645. http://doi.wiley. com/10.1002/biof.1191
- Ma J., Qiao X., Pan S., Shen H., Zhu G., Hou A. New isoprenylated flavonoids and cytotoxic constituents from Artocarpus tonkinensis. J. Asian Nat. Prod. Res. 2010; 12(7), 586–592. http:// www.tandfonline.com/doi/abs/10.1080/10286020.2010.485932
- 37. Kollár P., Bárta T., Hošek J., Souček K., Závalová V., Artinian S., Talhouk R., Šmejkal K., Suchý P., Hampl A. Prenylated Flavonoids from Morus alba L. Cause Inhibition of G1/S Transition in THP-1 Human Leukemia Cells and Prevent the Lipopolysaccharide-Induced Inflammatory Response. Evid. Based Complementary Alternat. Med. 2013; 2013, 1–13. http://www.hindawi.com/journals/ecam/2013/350519/
- 38. Lee H., Auh Q., Lee Y., Kang S., Chang S., Lee D., Kim Y., Kim E. Growth inhibition and apoptosis-inducing effects of cudraflavone B in human oral cancer cells via MAPK, NF-κB, and SIRT1 Signaling Pathway. Planta Medica. 2013; 79(14), 1298–1306. http://www.thieme-connect.de/DOI/DOI? 10.1055/s-0033-1350619
- Zou Y., Hou A., Zhu G., Chen Y., Sun H., Zhao Q. Cytotoxic isoprenylated xanthones from Cudrania tricuspidata. Bioorg. Med. Chem. 2004; 12(8), 1947–1953. http://linkinghub.elsevier. com/retrieve/pii/S0968089604000641
- Zhang Q., Tang Y., Chen R., Yu D. Three new cytotoxic Diels-Alder-type adducts from Morus australis. Chemistry 2007; 4(7), 1533–1540. https://onlinelibrary-wiley-com.katalog.vfu.cz:444/ doi/epdf/10.1002/cbdv.200790133
- Oke-Altuntas F., Kapche G., Nantchouang Ouete J., Demirtas I., Koc M., Ngadjui B. Bioactivity evaluation of cudraxanthone I, neocyclomorusin and (9βh)-3β-acetoxylanosta-7,24-diene isolated from Milicia excelsa Welw. C. C. Berg (Moraceae). Med. Chem. Res. 2016; 25(10), 2250–2257. http://link.springer. com/10.1007/s00044-016-1670-3
- Gryn-Rynko A., Bazylak G., Olszewska-Slonina D. New potential phytotherapeutics obtained from white mulberry (*Morus alba* L.) leaves. Biomed. Pharmacother. 2016; 84, 628–636. https://linkinghub.elsevier.com/retrieve/pii/S075333221631188
- 43. Ferlinahayati F., Syah Y., Juliawaty L., Achmad S., Hakim E., Takayama H., Said I., Latip J. Phenolic constituents from the wood of Morus australis with cytotoxic activity. Z. Natur-

forsch. C. 2008; 63(1–2), 35–39. https://www.degruyter.com/ downloadpdf/j/znc.2008.63.issue-1-2/znc-2008-1-207/znc-2008-1-207.pdf

- 44. Lee C., Yen F., Ko H., Li S., Chiang Y., Lee M., Tsai M., Hsu L. Cudraflavone C induces apoptosis of A375.S2 melanoma cells through mitochondrial ROS production and MAPK activation. Int. J. Mol. Sci. 2017; 18(7), 1508–1520. https://content-ebscohost-com.katalog.vfu.cz:444/Content-Server.asp?T=P&P=AN&K=124367473&S=R&D=a9h&EbscoContent=dGJyMNLr40Sep7A4xNvgOLCmr1GeprF-Sr6a4S7SWxWXS&ContentCustomer=dGJyMPGut0ivr-LZPuePfgeyx43zx
- Syah Y., Juliawaty L., Achmad S., Hakim E., Ghisalberti E. Cytotoxic prenylated flavones from Artocarpus champeden. J. Nat. Med. 2006; 60(4), 308–312. http://link.springer.com/10.1007/ s11418-006-0012-z
- 46. Soo H., Chung F., Lim K., Yap V., Bradshaw T., Hii L., Tan S., See S., Tan Y., Leong C., Mai C., Castresana J. Cudraflavone C Induces tumor-specific apoptosis in colorectal cancer cells through inhibition of the phosphoinositide 3-kinase (PI3K)-AKT pathway. PLoS One 2017; 12(1), 1–20. https://dx.plos.org/10.1371/ journal.pone.0170551
- Yang Z., Matsuzaki K., Takamatsu S., Kitanaka S. Inhibitory effects of constituents from morus alba var. multicaulis on differentiation of 3T3-L1 cells and nitric oxide production in RAW264.7 cells. Molecules 2011; 16(7), 6010–6022. http://www. mdpi.com/1420-3049/16/7/6010
- Mihara S., Hara M., Nakamura M., Sakurawi K., Tokura K., Fujimoto M., Fukai T., Nomura T. Non-peptide bombesin receptor antagonists, kuwanon G and H, isolated from mulberry. Biochem. Biophys. Res. Commun. 1995; 213(2), 594–599. http:// linkinghub.elsevier.com/retrieve/pii/S0006291X85721730
- 49. Seiter M., Salcher S., Rupp M., Hagenbuchner J., Kiechl-Kohlendorfer U., Mortier J., Wolber G., Rollinger J., Obexer P., Ausserlechner M. Discovery of Sanggenon G as a natural cell-permeable small-molecular weight inhibitor of X-linked inhibitor of apoptosis protein (XIAP). FEBS Open Bio. 2014; 4(1), 659–671. http://doi.wiley.com/10.1016/j.fob.2014.07.001
- 50. Wang Z., Li X., Chen M., Liu F., Han C., Kong L., Luo J. A strategy for screening of α-glucosidase inhibitors from Morus alba root bark based on the ligand fishing combined with high-performance liquid chromatography mass spectrometer and molecular docking. Talanta. 2018; 180, 337–345. https://linkinghub. elsevier.com/retrieve/pii/S0039914017312730
- Wang X., Di X., Shen T., Wang S., Wang X. New phenolic compounds from the leaves of Artocarpus heterophyllus. Chin. Chem. Lett. 2017; 28(1), 37–40. https://linkinghub.elsevier.com/retrieve/ pii/S1001841716301838
- Jung J., Park J., Lee Y., Seo K., Oh E., Lee D., Lim D., Han D., Baek N. Three new isoprenylated flavonoids from the root bark of Morus alba. Molecules 2016; 21(9), 1–10. http://www.mdpi. com/1420-3049/21/9/1112
- Ferlinahayati F., Syah Y., Juliawaty L., Hakim E. Flavanones from the wood of Morus nigra with cytotoxic activity. Indones. J. Chem. 2013; 13, 205–208. https://www.researchgate.net/publication/286348915_Flavanones_from_the_wood_of_Morus_nigra_with_cytotoxic_activity
- Kofujita H., Yaguchi M., Doi N., Suzuki K. A novel cytotoxic prenylated flavonoid from the root of Morus alba. J. Insect Bio-

technol. Sericology 2004; 73(3), 113–116. https://www.jstage.jst. go.jp/article/jibs/73/3/73_3_113/_pdf/-char/en

- Šmejkal K. Cytotoxic potential of C-prenylated flavonoids. Phytochem. Rev. 2014; 13(1), 245–275. http://link.springer. com/10.1007/s11101-013-9308-2
- Cui L., Lee H., Oh W., Ahn J. Inhibition of sanggenon G isolated from Morus alba on the metastasis of cancer cell. Chm. 2011; 3(1), 23–26. http://www.tiprpress.com/chmen/ch/reader/create_pdf.aspx?file_no=CHM20100722001&year_id=2011&quarter id=1&fal
- Nam M., Jung D., Seo K., Kim B., Kim J., Kim J., Kim B., Baek N., Kim S. Apoptotic effect of sanggenol L via caspase activation and inhibition of NF-κB signaling in ovarian cancer cells. Phytother. Res. 2016; 30(1), 90–96. http://doi.wiley.com/10.1002/ ptr.5505
- Zhou P., Dong X., Tang P. Sanggenon C induces apoptosis of prostate cancer PC3 cells by activating caspase 3 and caspase 9 pathways. Nan Fang Yi Ke Da Xue Xue Bao 2017; 37(9), 1206– 1210. http://www.j-smu.com/Upload/html/2017091206.html
- Chen L., Liu Z., Zhang L., Yao J., Wang C. Sanggenon C induces apoptosis of colon cancer cells via inhibition of NO production, iNOS expression and ROS activation of the mitochondrial pathway. Oncol. Rep. 2017; 38(4), 2123–2131. https://www.spandidos-publications.com/10.3892/or.2017.5912
- 60. Dat N., Xuan Binh P., Phuong Quynh L., Huóng H., Van Minh C. Sanggenon C and O inhibit NO production, iNOS expression and NF-κB activation in LPS-induced RAW264.7 cells. Immunopharmacol. Immunotoxicol. 2012; 34(1), 84–88. https://eds-a-ebscohost-com.katalog.vfu.cz:444/eds/pdfviewer/ pdfviewer?vid=5&sid=caf51610-430c-4581-952f-c80d8366c0d6 %40sdc-v-sessmgr04
- 61. Huang H., Liu N., Zhao K., Zhu C., Lu X., Li S., Lian W., Zhou P., Dong X., Zhao C., Guo H., Zhang C., Yang C., Wen G., Lu L., Li X., Guan L., Liu C., Wang X., Dou Q., Liu J. Sanggenon C decreases tumor cell viability associated with proteasome inhibition. Front. Biosci. 2011; 3(4), 1315–1325. https://www. researchgate.net/publication/51174312_Sanggenon_C_decreases_tumor_cell_viability_associated_with_proteasome_inhibition
- Shi Y., Fukai T., Sakagami H., Chang W., Yang P., Wang F., Nomura T. Cytotoxic Flavonoids with Isoprenoid Groups from Morus mongolica. J. Nat. Prod. 2001; 64(2), 181–188. http://pubs. acs.org/doi/abs/10.1021/np000317c
- Dat N., Jin X., Lee K., Hong Y., Kim Y., Lee J. Hypoxia-inducible factor-1 inhibitory benzofurans and chalcone-derived Diels-alder adducts from Morus species. J. Nat. Prod. 2009; 72(1), 39–43. http://pubs.acs.org/doi/abs/10.1021/np800491u
- Wu Y., Kim Y., Kwon T., Tan C., Son K., Kim T. Anti-inflammatory effects of mulberry (*Morus alba* L.) root bark and its active compounds. Nat. Prod. Res. 2019; 1–4. https://www.tandfonline. com/doi/full/10.1080/14786419.2018.1527832
- 65. Jing W., Yan R., Wang Y. A practical strategy for chemical profiling of herbal medicines using ultra-high performance liquid chromatography coupled with hybrid triple quadrupole-linear ion trap mass spectrometry: a case study of Mori Cortex. Anal. Methods. 2015; 7(2), 443–457. https://pubs.rsc.org/en/content/ getauthorversionpdf/C4AY02196G
- 66. Liu Y., Li S., Hou J., Liu Y., Wang D., Jiang Y., Ge G., Liang X., Yang L. Identification and characterization of naturally

occurring inhibitors against human carboxylesterase 2 in White Mulberry Root-bark. Fitoterapia 2016; 115, 57–63. https://linkinghub.elsevier.com/retrieve/pii/S0367326X16304981

- Kim S., Son E., Yoon S. Pharmaceutical composition including sanggenol Q for preventing or treating lung cancer. 2017. Republic of Korea. KR101771364B1. Uděleno 19. 7. 2016. Zapsáno 24. 8. 2017. https://patents.google.com/patent/KR101771364B1/en
- Yang Y., Zhang T., Xiao L., Yang L., Chen R. Two new chalcones from leaves of Morus alba L. Fitoterapia. 2010; 81(6), 614–616. https://linkinghub.elsevier.com/retrieve/pii/ S0367326X1000064X
- Li K., Zheng Q., Chen X., Wang Y., Wang D., Wang J. Isobavachalcone Induces ROS-Mediated Apoptosis via Targeting Thioredoxin Reductase 1 in Human Prostate Cancer PC-3 Cells. Oxid. Med. Cell. Longev. 2018; 2018, 1–13. https://www.hindawi.com/ journals/omcl/2018/1915828/
- Shi Y., Wu W., Huo A., Zhou W., Jin X. Isobavachalcone inhibits the proliferation and invasion of tongue squamous cell carcinoma cells. Oncol. Lett. 2017; 14(3), 2852–2858. https://www.spandidos-publications.com/10.3892/ol.2017.6517
- Jin X., Shi Y. Isobavachalcone induces the apoptosis of gastric cancer cells via inhibition of the Akt and Erk pathways. Exp. Ther. Med. 2016; 11(2), 403–408. https://www.spandidos-publications. com/10.3892/etm.2015.2904
- 72. Kuete V., Mbaveng A., Zeino M., Fozing C., Ngameni B., Kapche G., Ngadjui B., Efferth T. Cytotoxicity of three naturally occurring flavonoid derived compounds (artocarpesin, cycloartocarpesin and isobavachalcone) towards multi-factorial drug-resistant cancer cells. Phytomedicine 2015; 22(12), 1096–1102. https:// linkinghub.elsevier.com/retrieve/pii/S0944711315002330
- Szliszka E., Jaworska D., Ksek M., Czuba Z., Król W. Targeting death receptor TRAIL-R2 by chalcones for TRAIL-induced apoptosis in cancer cells. Int. J. Mol. Sci. 2012; 13(12), 15343– 15359. http://www.mdpi.com/1422-0067/13/11/15343
- 74. Zhao S., Ma C., Liu C., Wei W., Sun Y., Yan H., Wu Y. Autophagy inhibition enhances isobavachalcone-induced cell death in multiple myeloma cells. Int. J. Mol. Sci. 2012; 30(4), 939–944. https://www.spandidos-publications.com/10.3892/ijmm.2012.1066
- 75. Jing H., Zhou X., Dong X., Cao J., Zhu H., Lou J., Hu Y., He Q., Yang B. Abrogation of Akt signaling by Isobavachalcone contributes to its anti-proliferative effects towards human cancer cells. Cancer Lett. 2010; 294(2), 167–177. https://linkinghub.elsevier.com/retrieve/pii/S0304383510000704
- 76. Nishimura R., Tabata K., Arakawa M., Ito Y., Kimura Y., Akihisa T., Nagai H., Sakuma A., Kohno H., Suzuki T. Isobavachalcone, a chalcone constituent of Angelica keiskei, induces apoptosis in neuroblastoma. Biological. 2007; 30(10), 1878–1883. https://www.jstage.jst.go.jp/article/bpb/30/10/30 10 1878/ pdf
- Phung T., Tran T., Dan T., Chau V., Hoang T., Nguyen T. Chalcone-derived Diels–Alder adducts as NF-κB inhibitors from Morus alba. J. Asian Nat. Prod. Res. 2012; 14(6), 596–600. https:// www.tandfonline.com/doi/abs/10.1080/10286020.2012.670221
- Kikuchi T., Nihei M., Nagai H., Fukushi H., Tabata K., Suzuki t., Akihisa T. Albanol A from the Root Bark of Morus alba L. Induces Apoptotic Cell Death in HL60 Human Leukemia Cell Line. Chemical 2010; 58(4), 568–571. https://www.jstage.jst.go.jp/article/cpb/58/4/58_4_568/_pdf/-char/en
- Lee Y., Seo K., Hong E., Kim D., Kim Y., Baek N. Diels-alder type adducts from the fruits of Morus alba L. Appl. Biol. Chem. 2016;

59(2), 91–94. https://www.researchgate.net/publication/304583358_ Diels-Alder_type_adducts_from_the_fruits_of_Morus_alba_L

- Han H., Chou C., Li R., Liu J., Zhang L., Zhu W., Hu J., Yang B., Tian J. Chalcomoracin is a potent anticancer agent acting through triggering Oxidative stress via a mitophagy- and paraptosis-dependent mechanism. Sci. Rep. 2018; 8(1), 1–14. https:// www.nature.com/articles/s41598-018-27724-3.pdf
- Cui X., Wang L., Yan R., Tan Y., Chen R., Yu D. A new Diels-Alder type adduct and two new flavones from the stem bark of Morus yunanensis Koidz. J. Asian Nat. Prod. Res. 2008; 10(4), 315–318. http://www.tandfonline.com/doi/ abs/10.1080/10286020701833537
- 82. Ha M., Seong S., Nguyen T., Cho W., Ah K., Ma J., Woo M., Choi J., Min B. Chalcone derivatives from the root bark of Morus

alba L. act as inhibitors of PTP1B and α -glucosidase. Phytochemistry 2018; 155, 114–125. https://linkinghub.elsevier.com/retrieve/pii/S0031942218304254

- Hu C., Chen Z., Yao R., Xu G. Inhibition of protein kinase C by stilbene derivatives from Morus alba L. Tianran Chanwu Yanjiu Yu Kaifa 1996; 8(2), 13–16. http://en.cnki.com.cn/Article_en/ CJFDTOTAL-TRCW199602002.htm
- 84. Šmejkal K., Svačinová J., Šlapetová T., Schneiderová K., Dall'Acqua S., Innocenti G., Závalová V., Kollár P., Chudík S., Marek R., Julinek O., Urbanová M., Kartal M., Csöllei M., Doležal K. Cytotoxic activities of several geranyl-substituted flavanones. J. Nat. Prod. 2010; 73(4), 568–572. http://pubs.acs.org/ doi/abs/10.1021/np900681y