#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Inhibítory PCSK9 a diabetes mellitus


PCSK9 inhibitors and diabetes mellitus

Proproteinconvertase subtilisin kexin 9 (PCSK9) is a key regulator of low-density lipoprotein receptor (LDLR) expression. Anti-PCSK9 monoclonal antibody (MAb) therapy reduces LDL-cholesterol (LDL-C) by ~60 % and reduces also the risk of major adverse cardiovascular events. Mendelian randomisation studies showed that patients carrying loss-of-function PCSK9 genetic variants display lower LDL-C and have an increased risk of developing type 2 diabetes (T2DM). Randomized controlled trials with anti-PCSK9 MAbs however showed no effect on the risk. A possible explanation of the discrepancy is that the deficiency of locally but not circulating PCSK9 is responsible for increased LDLR expression in pancreatic islets, which results in cholesterol accumulation and B-cell dysfunction. Thus PCSK9 lowering therapy with MAb targeting mainly circulating PCSK9 might have a limited impact on LDLR expression in pancreatic cells and on the risk of T2DM. Long-term clinical trials are however needed to confirm it.

Key words:

diabetes mellitus – LDL receptor – PCSK9


Authors: Branislav Vohnout 1,2,3;  Jana Lisičanová 3;  Andrea Havranová 4
Authors‘ workplace: Ústav výživy, FO a ZOŠ a Koordinačné centrum pre familiárne hyperlipoproteinémie, Slovenská zdravotnícka univerzita v Bratislave, Slovenská republika 1;  Ústav epidemiológie LF UK v Bratislave, Slovenská republika 2;  Diabetologická ambulancia Diabeda s. r. o., Bratislava, Slovenská republika 3;  Ústav klinického a translačného výskumu, Biomedicínske centrum Slovenskej akadémie vied, Bratislava, Slovenská republika 4
Published in: Vnitř Lék 2018; 64(12): 1186-1189
Category:

Overview

Proproteínkonvertáza subtilizín kexín typu 9 (PCSK9) zohráva kľúčovú úlohu v regulácii expresie LDL receptorov (LDLR). Klinické štúdie s monoklonálnymi protilátkami proti cirkulujúcemu PCSK9 (anti-PCSK9 MAbs) preukázali nielen potentný efekt na redukciu LDL-cholesterolu (až do asi 60 %), ale aj redukciu rizika veľkých kardiovaskulárnych príhod. Avšak mendelovské randomizačné štúdie ukázali, že nositelia loss-of-function variant génu pre PCSK9 majú okrem nižších hladín LDL-cholesterolu aj zvýšené riziko rozvoja diabetes mellitus 2. typu (DM2T). Výsledky klinických štúdií s monoklonálnymi protilátkami proti PCSK9 však takéto riziko nepotvrdzujú. Túto diskrepanciu možno vysvetliť tým, že za zvýšenú expresiu LDLR v bunkách pankreasu, ktorá vedie k intracelulárnej akumulácii cholesterolu a poruche funkcie B-buniek je zodpovedný deficit lokálneho a nie cirkulujúceho PCSK9. Zdá sa teda, že PCSK9 znižujúca liečba pomocou monoklonálnych protilátok, ktoré pôsobia len na cirkulujúci proteín, môže mať len limitovaný efekt na expresiu LDLR v pankreatických bunkách, a teda nebudú zvyšovať riziko DM2T. Pre definitívne potvrdenie tohto však potrebujeme viac údajov z dostatočne dlho trvajúcich klinických štúdií.

Kľúčové slová:

diabetes melitus – LDL receptor – PCSK9 

Úvod

Kauzálna úloha LDL-cholesterolu (LDL-C) v patogenéze aterosklerózy bola dokázaná na viacerých stupňoch vedeckých dôkazov, vrátane veľkého množstva klinických štúdií, ktoré preukázali efekt redukcie LDL-C na kardiovaskulárne (KV) riziko u pacientov v primárnej aj sekundárnej prevencii, pričom tento efekt bol dosiahnutý rôznym mechanizmom redukcie LDL-C [1,2]. Napriek redukcii hladiny LDL-C sa u významného počtu pacientov nepodarí dosiahnuť cieľové hodnoty LDL-C (hlavne u pacientov vo veľmi vysokom riziku) a zabrániť vzniku KV príhody, aj keď budú liečení potentným statínom, respektíve kombináciou statín a ezetimib [3,4]. Ďalšie terapeutické možnosti ovplyvnenia hladín LDL-C sú preto terapeutickou a klinickou nevyhnutnosťou.

Proproteínkonvertáza subtilizín kexín typu 9 (PCSK9) zohráva kľúčovú úlohu v regulácii funkcie LDL receptorov (LDLR). Cirkulujúce PCSK9 sa viaže na LDLR, čo vedie k intracelulárnej degradácii LDLR v lyzosómoch, a tým k zníženej expresii LDLR na povrch buniek, čo má za následok zvýšenie plazmatických hladín LDL-C (pre podrobnejší prehľad odkazujem na [5]). Loss-of-function mutácie v géne pre PCSK9 vedú k nižším hladinám LDL-C a významne znižujú kardiovaskulárne riziko [6], kým naopak gain-of-function mutácie PCSK9 sú charakterizované zvýšenou hladinou LDL-C a zvýšeným rizikom KV príhod a fenotypovo sú konzistentné s familiárnou hypercholesterolémiou [7]. Inhibícia PCSK9 je preto logicky vhodným spôsobom, ako dosiahnuť zlepšenie kontroly zvýšených hladín LDL-C. Klinické štúdie s monoklonálnymi protilátkami proti cirkulujúcemu PCSK9 (anti-PCSK9 MAbs) preukázali nielen potentný efekt na redukciu LDL-C (až do asi 60 %), ale aj redukciu rizika veľkých KV príhod [8–10].

Statíny a riziko diabetes mellitus

Napriek jednoznačnému klinickému benefitu liečby statínmi (inhibítormi HMG CoA reduktázy) je táto liečba spojená aj s miernym nárastom výskytu novovzniknutého diabetes mellitus 2. typu (DM2T), ovplyvnením glukózového metabolizmu a nárastom telesnej hmotnosti [11–13]. Genetické štúdie posudzujúce vplyv bežných variantov kódujúcich HMG-CoA reduktázu naznačujú, že toto riziko je aspoň čiastočne vysvetliteľné práve inhibíciou HMG-CoA reduktázy [13], ďalšie genetické štúdie naznačujú komplexnejší vzťah medzi nízkymi hladinami LDL-C a zvýšeným rizikom DM2T [14–16]. V súlade s týmto sa javí aj zistenie, že pacienti s familiárnou hypercholesterolémiou, autosomálne dominantne podmieneným zvýšením hladiny LDL-C postihnutím funkcie LDLR majú naopak nižšiu prevalenciu DM2T ako ich nepostihnutí príbuzní [17]. Zvýšená expresia LDLR v dôsledku zníženej syntézy cholesterolu v bunkách pri liečbe statínmi sa preto môže podieľať na tzv. diabetogénnom efekte statínov [18].

PCSK9 a diabetes mellitus – genetické a klinické štúdie

Na základe týchto skutočností vystáva oprávnená otázka o možnej spojitosti medzi rizikom vzniku DM2T a užívaním nových liekov znižujúcich LDL-C vrátane inhibítorov PCSK9. Nedávno publikované 3 mendelovské randomizačné štúdie súhlasne ukázali, že nositelia loss-of-function variant génu pre PCSK9 majú okrem nižších hladín LDL-C aj zvýšené riziko rozvoja DM2T [16,19,20]. Analýza Schmidta et al [19] ukázala, že geneticky – variantmi PCSK9 podmienené zníženie LDL-C o 1 mmol/l je asociované s 29% (OR 1,29, 95% CI 1,11–1,50) nárastom rizika DM2T, zvýšenou hladinou glyk­émie nalačno (o 0,09 mmol/l), zvýšením telesnej hmotnosti (o 1,03 kg) a waist-to-hip ratio (o 0,006). Nebol však zaznamenaný vzťah k HbA1c, BMI a hladine inzulínu nalačno. Nález týchto vzťahov podmieňuje oprávnené otázky, či liečba podmienená inhibíciou PCSK9 nevedie k zvýšenému riziku rozvoja DM2T.

Na rozdiel od statínov nie je pri PCSK9 jednoznačný súlad medzi genetickými a klinickými štúdiami pri posudzovaní rizika novovzniknutého DM2T. Metaanalýzy randomizovaných klinických štúdií s anti-PCSK9 MAbs nepreukázali zvýšené riziko novovzniknutého DM2T, resp. zhoršenia diabetu [21–23], pričom nebol rozdiel medzi jednotlivými liekmi – alirokumabom, evolokumabom a bokocizumabom [23]. Limitom týchto štúdií môže byť relatívne kratší čas sledovania, nedostatočný na preukázanie efektu liečby na riziko DM2T. Dôležitosť trvania dĺžky liečby vo vzťahu k riziku DM2T naznačuje aj exploratórna metaregresná analýza v rámci jednej zo spomenutých metaanalýz. V kontradikcii s výsledkom samotnej metaanalýzy, podľa metaregresie každý mesiac trvania liečby počas 48.-114. týždňa liečby bol spojený so zvýšením rizika novovzniknutého DM2T alebo zhoršenia DM2T o 0,97 % [(0,12–2,07), p = 0,026] [23]. Táto analýza tiež naznačuje vzťah medzi veľkosťou poklesu hodnôt LDL-C a rizikom zhoršenia alebo novodiagnostikovania DM2T; na každých 10 % poklesu LDL-C pripadal nárast rizika DM2T o 3,8 % [(0,5–6,3), p = 0,024], u pacientov s celkovým poklesom LDL-C ≥ 50 % bolo toto riziko 5,5 % [(0,7–11,0), p = 0,029]. Vzťah medzi rizikom liečby s anti-PCSK9 MAbs a diabetom sa však nepreukázal ani v štúdii FOURIER s evolokumabom s mediánom sledovania pacientov 2,2 roku (HR 1,05; 95% CI, 0,94–1,17) a tiež v najdlhšej štúdii ODYSSEY OUTCOMES s mediánom sledovania 2,8 rokov (incidencia novovzniknutého DM2T 9,6 % v ramene s alirokumabom vs 10,1 % s placebom) [8,9]. Liečba alirokumabom v štúdii ODYSSEY OUTCOMES taktiež neviedla k zhoršeniu diabetu alebo komplikáciám u pacientov s prítomným diabetom na začiatku štúdie [8].

Použitie anti-PCSK9 MAbs malo malý, ale štatisticky významný vplyv na hladiny glykémie nalačno a HbA1c v jednej metaanalýze štúdií s anti-PCSK9 MAbs [23], na druhej strane v analýze 10 štúdií fázy III s alirokumabom táto liečba nebola u pacientov bez prítomnosti diabetu alebo s prediabetom spojená so zmenami v hladinách HbA1c a glykémie nalačno [24].

PCSK9 a mechanizmus rizika vzniku DM2T

PCSK9 je syntetizované hlavne v pečeni, avšak jeho produkcia je prítomná aj v obličkách, tenkom čreve, mozgovom tkanive a pankrease [25]. Akumulácia cholesterolu v B-bunkách pankreasu prebieha hlavne cestou LDLR, pričom homeostáza cholesterolu je kľúčová pre funkciu a prežívanie B-buniek. Nadmerná akumulácia cholesterolu v nich vedie k redukcii sekrécie inzulínu v odpovedi na stimul glukózou [26] a k bunkovej toxicite [27,28]. Dá sa preto predpokladať, že stavy ovplyvňujúce expresiu LDLR môžu ovplyvňovať aj glukózový metabolizmus.

Recentne publikovaná translačná štúdia talianskych autorov priniesla dôležité informácie pre pochopenie molekulárneho mechanizmu vzťahu PCSK9 a diabetu [29]. V sérii experimentov s geneticky modifikovanými myšami potvrdili pri glukózotolerančnom teste porušenú toleranciu glukózy u PCSK9 deficientných myší (PCSK9 KO) v porovnaní s normálnymi (WT). V následnom experimente bol obom typom zvierat po 4 hod lačnenia podaný intraperitoneálne inzulín, čo viedlo k porovnateľnému poklesu plazmatických hladín glukózy, čím sa vylúčila prítomnosť inzulínovej rezistencie u PCSK9 KO myší. PCSK9 KO myši mali významne nižšie hladiny C-peptidu a inzulínu a znížený vzostup hladiny inzulínu v sérii experimentov nalačno a po záťaži, pričom vylúčili, že tento fenotyp je spôsobený postihnutím produkcie inkretínov. V kontraste s bežnými myšami B-bunky PCSK9 deficientných myší vykazovali nepravidelnosti a väčšiu veľkosť a porušenú sekréciu inzulínu. Poruchu funkcie B-buniek potvrdili aj na ľuďoch, keď subjekty s loss-of-function variantom PCSK9 vykazovali dysfunkciu B-buniek (posudzované pomocou HOMA-BC), ale nie inzulínovú rezistenciu. V sérii ďalších experimentov autori ukázali, že morfologické a funkčné zmeny B-buniek u PCSK9 deficientných myši možno vysvetliť zvýšenou expresiou LDLR vedúcou k zvýšenej akumulácii cholesterolu v B-bunkách. Pravdepodobne najzaujímavejším výsledkom práce je posúdenie vplyvu v pečeni vznikajúceho cirkulujúceho PCSK9 na glukózový metabolizmus a funkciu B-buniek. Zvieratá s deficitom pečeňovo špecifickej PCSK9 mali nedetekovateľné plazmatické hladiny PCSK9 pri zachovanej produkcii PCSK9 v ostatných tkanivách vrátane pankreasu. Takýto stav napodobňuje situáciu aká je pri liečbe pomocou anti-PCSK9 MAbs, ktoré ovplyvňujú PCSK9 v cirkulácii, pričom ostáva zachovaná produkcia PCSK9 v extrahepatálnych tkanivách. Myši s deficitom pečeňovo špecifickej PCSK9 mali porovnateľné hladiny pankreatického aj plazmatického inzulínu, expresiu LDLR, obsah esterov cholesterolu v pankreatických ostrovčekoch a toleranciu glukózy ako kontrolné bežné zvieratá. Tieto dáta naznačujú, že cirkulujúce PCSK9 má minimálny efekt na LDLR v pankrease a teda terapia zameraná na v pečeni vznikajúce cirkulujúce PCSK9 (tak ako je tomu pri anti-PCSK9 MAbs) nemusí zvyšovať riziko DM2T. Táto translančná štúdia prispieva aj k pochopeniu diskrepancií ohľadom rizika PCSK9 a DM2T medzi genetickými a klinickými štúdiami.

Záver

Hypolipidemická liečba statínmi zameraná na zníženie hladín LDL-cholesterolu (LDL-C) prináša okrem nespochybniteľného kardiovaskulárneho benefitu aj ovplyvnenie glukózovej homeostázy a určité zvýšenie rizika vzniku ochorenia diabetes mellitus 2. typu (DM2T). Genetické štúdie taktiež poukazujú na vzťah medzi nízkymi hladinami LDL-C a rizikom vzniku diabetu. Inhibícia PCSK9 prináša potentné zníženie hladín LDL-C a redukciu kardiovaskulárneho rizika, či však vedie aj k zvýšeniu rizika vzniku DM2T nie je jasné. Mendelovské randomizačné štúdie súhlasne ukázali, že nositelia loss-of-function variant génu pre PCSK9 majú okrem nižších hladín LDL-C aj zvýšené riziko rozvoja DM2T, výsledky klinických štúdií s monoklonálnymi protilátkami proti PCSK9 však takéto riziko nepotvrdzujú. Túto diskrepanciu možno vysvetliť tým, že za zvýšenú expresiu LDLR v bunkách pankreasu, ktorá vedie k intracelulárnej akumulácii cholesterolu a poruche funkcie B-buniek je zodpovedný deficit lokálneho a nie cirkulujúceho PCSK9. Zdá sa teda, že PCSK9 znižujúca liečba pomocou monoklonálnych protilátok, ktoré pôsobia len na cirkulujúci proteín môže mať len limitovaný efekt na expresiu LDLR v pankreatických bunkách, a teda nebudú zvyšovať riziko DM2T. Pre definitívne potvrdenie tohto však potrebujeme viac údajov z dostatočne dlho trvajúcich klinických štúdií, otvorenou otázkou ostáva riziko vzniku diabetu u iných typov inhibície PCSK9, ktoré môžu ovplyvňovať extra aj intracelulárne PCSK9.

doc. MUDr. Branislav Vohnout, PhD

bvohnout@yahoo.com

Ústav výživy, FO a ZOŠ a Koordinačné centrum pre familiárne hyperlipoproteinémie

Slovenská zdravotnícka univerzita v Bratislave, Slovenská republika

www.szu.sk

Doručeno do redakce 9. 11. 2018

Přijato po recenzi 15. 11. 2018


Sources
  1. Ference BA, Ginsberg HN, Graham I et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur Heart J 2017; 38(32): 2459–2472. Dostupné z DOI: <http://dx.doi.org/10.1093/eurheartj/ehx144>.
  2. Vohnout B, Havranová A. LDL-cholesterol – hlavný rizikový faktor aterosklerózy. AtheroRev 2016; 1(2)2: 88–92.
  3. Baigent C, Blackwell L, Emberson J et al. Cholesterol Treatment Trialists’ (CTT) Collaboration, Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet 2010; 376(9753): 1670–1681. Dostupné z DOI: <http://dx.doi.org/10.1016/S0140–6736(10)61350–5>.
  4. Cannon CP, Blazing MA, Giugliano RP et al. IMPROVE-IT Investigators. Ezetimibe Added to Statin Therapy after Acute Coronary Syndromes. N Engl J Med 2015; 372(25): 2387–2397. Dostupné z DOI: <http://dx.doi.org/10.1056/NEJMoa1410489>.
  5. Lagace TA. PCSK9 and LDLR degradation: regulatory mechanisms in circulation and in cells. Curr Opin Lipidol 2014; 25(5): 387–393. Dostupné z DOI: <http://dx.doi.org/10.1097/MOL.0000000000000114>.
  6. Cohen JC, Boerwinkle E, Mosley TH Jr et al. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N Engl J Med 2006; 354(12): 1264–1272. <http://dx.doi.org/10.1056/NEJMoa054013>.
  7. Abifadel M, Varret M, Rabès JP et al. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet 2003; 34(2): 154–156. Dostupné z DOI: <http://dx.doi.org/10.1038/ng1161>.
  8. Schwartz GG, Steg PG, Szarek M et al. [ODYSSEY OUTCOMES Committees and Investigators]. Alirocumab and Cardiovascular Outcomes after Acute Coronary Syndrome. N Engl J Med 2018. Dostupné z DOI: <http://dx.doi.org/10.1056/NEJMoa1801174>.
  9. Sabatine MS, Giugliano RP, Keech AC et al. [FOURIER Steering Committee and Investigators]. Evolocumab and Clinical Outcomes in Patients with Cardiovascular Disease. N Engl J Med 2017; 376(18): 1713–1722. Dostupné z DOI: <http://dx.doi.org/10.1056/NEJMoa1615664>.
  10. Ridker PM, Revkin J, Amarenco P et al. [SPIRE Cardiovascular Outcome Investigators]. Cardiovascular Efficacy and Safety of Bococizumab in High-Risk Patients. N Engl J Med 2017; 376(16): 1527–1539. Dostupné z DOI: <http://dx.doi.org/10.1056/NEJMoa1701488>.
  11. Sattar N, Preiss D, Murray HM et al. Statins and risk of incident diabetes: a collaborative meta-analysis of randomised statin trials. Lancet 2010; 375(9716): 735–742. Dostupné z DOI: <http://dx.doi.org/10.1016/S0140–6736(09)61965–6>.
  12. Preiss D, Seshasai SR, Welsh P et al. Risk of incident diabetes with intensive-dose compared with moderate-dose statin therapy: a meta-analysis. JAMA 2011; 305(24): 2556–2564. Dostupné z DOI: <http://dx.doi.org/10.1001/jama.2011.860>.
  13. Swerdlow DI, Preiss D, Kuchenbaecker KB et al. HMG-coenzyme A reductase inhibition, type 2 diabetes, and bodyweight: evidence from genetic analysis and randomised trials. Lancet 2015; 385(9965): 351–361. Dostupné z DOI: <http://dx.doi.org/10.1016/S0140–6736(14)61183–1>.
  14. White J, Swerdlow DI, Preiss D et al. Association of Lipid Fractions With Risks for Coronary Artery Disease and Diabetes. JAMA Cardiol 2016; 1(6): 692–699. Dostupné z DOI: <http://dx.doi.org/10.1001/jamacardio.2016.1884>.
  15. Fall T, Xie W, Poon W et al. Using Genetic Variants to Assess the Relationship Between Circulating Lipids and Type 2 Diabetes. Diabetes 2015; 64(7): 2676–2684. Dostupné z DOI: <http://dx.doi.org/10.2337/db14–1710>.
  16. Ference BA, Robinson JG, Brook RD et al. Variation in PCSK9 and HMGCR and Risk of Cardiovascular Disease and Diabetes. N Engl J Med 2016; 375(22): 2144–2153. Dostupné z DOI: <http://dx.doi.org/10.1056/NEJMoa1604304>.
  17. Besseling J, Kastelein JJ, Defesche JC et al. Association between familial hypercholesterolemia and prevalence of type 2 diabetes mellitus. JAMA 2015; 313(10): 1029–1036. Dostupné z DOI: <http://dx.doi.org/10.1001/jama.2015.1206>.
  18. Filippatos TD, Panagiotopoulou T, Tzavella E et al. Hypolipidemic Drugs and Diabetes Mellitus-Mechanisms and Data From Genetic Trials. J Cardiovasc Pharmacol Ther 2018; 23(3): 187–191. Dostupné z DOI: <http://dx.doi.org/10.1177/1074248418757011>.
  19. Schmidt AF, Swerdlow DI, Holmes MV et al. PCSK9 genetic variants and risk of type 2 diabetes: A mendelian randomisation study. Lancet Diabetes Endocrinol 2017; 5(2): 97–105. Dostupné z DOI: <http://dx.doi.org/10.1016/S2213–8587(16)30396–5>.
  20. Lotta LA, Sharp SJ, Burgess S et al. Association between low-density lipoprotein cholesterollowering genetic variants and risk of type 2 diabetes: A meta-analysis. JAMA 2016; 316(13): 1383–1391. Dostupné z DOI: <http://dx.doi.org/10.1001/jama.2016.14568>.
  21. Karatasakis A, Danek BA, Karacsonyi J et al. Effect of PCSK9 Inhibitors on Clinical Outcomes in Patients With Hypercholesterolemia: A Meta-Analysis of 35 Randomized Controlled Trials. J Am Heart Assoc 2017; 6(12). pii: e006910. Dostupné z DOI: <http://dx.doi.org/10.1161/JAHA.117.006910>.
  22. Colhoun HM, Ginsberg HN, Robinson JG et al. No effect of PCSK9 inhibitor alirocumab on the incidence of diabetes in a pooled analysis from 10 ODYSSEY Phase 3 studies. Eur Heart J 2016; 37(39): 2981–2989. Dostupné z DOI: <http://dx.doi.org/10.1093/eurheartj/ehw292>.
  23. de Carvalho LSF, Campos AM, Sposito AC. Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) Inhibitors and Incident Type 2 Diabetes: A Systematic Review and Meta-analysis With Over 96,000 Patient-Years. Diabetes Care 2018; 41(2): 364–367. Dostupné z DOI: <http://dx.doi.org/10.2337/dc17–1464>.
  24. Leiter LA, Müller-Wieland D, Baccara-Dinet MT et al. Efficacy and safety of alirocumab in people with prediabetes vs those with normoglycaemia at baseline: a pooled analysis of 10 phase III ODYSSEY clinical trials. Diabet Med 2018; 35(1): 121–130. Dostupné z DOI: <http://dx.doi.org/10.1111/dme.13450>.
  25. Norata GD, Tavori H, Pirillo A et al. Biology of proprotein convertase subtilisin kexin 9: beyond low-density lipoprotein cholesterol lowering. Cardiovasc Res 2016; 112(1): 429–442. Dostupné z DOI: <http://dx.doi.org/10.1093/cvr/cvw194>.
  26. Hao M, Head WS, Gunawardana SC et al. Direct effect of cholesterol on insulin secretion: a novel mechanism for pancreatic beta-cell dysfunction. Diabetes 2007; 56(9): 2328–2338. Dostupné z DOI: <http://dx.doi.org/10.2337/db07–0056>.
  27. Cnop M, Hannaert J, Grupping A et al. Low density lipoprotein can cause death of islet beta-cells by its cellular uptake and oxidative modification. Endocrinology 2002; 143(9): 3449–3453. Dostupné z DOI: <http://dx.doi.org/10.1210/en.2002–220273>.
  28. Paul R, Choudhury A, Choudhury S et al. Cholesterol in pancreatic beta-cell death and dysfunction: underlying mechanisms and pathological implications. Pancreas 2016; 45(3): 317–324. Dostupné z DOI: <http://dx.doi.org/10.1097/MPA.0000000000000486>.
  29. Da Dalt L, Ruscica M, Bonacina F et al. PCSK9 deficiency reduces insulin secretion and promotes glucose intolerance: the role of the low-density lipoprotein receptor. Eur Heart J 2018. Dostupné z DOI: <http://dx.doi.org/10.1093/eurheartj/ehy357>.
Labels
Diabetology Endocrinology Internal medicine

Article was published in

Internal Medicine

Issue 12

2018 Issue 12
Popular this week
Most read in this issue
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#