#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Prediction of non-muscle invasive bladder cancer outcomes assessed by innovative multimarker prognostic models


Background:
We adapted Bayesian statistical learning strategies to the prognosis field to investigate if genome-wide common SNP improve the prediction ability of clinico-pathological prognosticators and applied it to non-muscle invasive bladder cancer (NMIBC) patients.

Methods:
Adapted Bayesian sequential threshold models in combination with LASSO were applied to consider the time-to-event and the censoring nature of data. We studied 822 NMIBC patients followed-up >10 years. The study outcomes were time-to-first-recurrence and time-to-progression. The predictive ability of the models including up to 171,304 SNP and/or 6 clinico-pathological prognosticators was evaluated using AUC-ROC and determination coefficient.

Results:
Clinico-pathological prognosticators explained a larger proportion of the time-to-first-recurrence (3.1 %) and time-to-progression (5.4 %) phenotypic variances than SNPs (1 and 0.01 %, respectively). Adding SNPs to the clinico-pathological-parameters model slightly improved the prediction of time-to-first-recurrence (up to 4 %). The prediction of time-to-progression using both clinico-pathological prognosticators and SNP did not improve. Heritability (ĥ 2) of both outcomes was <1 % in NMIBC.

Conclusions:
We adapted a Bayesian statistical learning method to deal with a large number of parameters in prognostic studies. Common SNPs showed a limited role in predicting NMIBC outcomes yielding a very low heritability for both outcomes. We report for the first time a heritability estimate for a disease outcome. Our method can be extended to other disease models.

Keywords:
Multimarker models Bayesian statistical learning method Bayesian regression Bayesian LASSO AUC-ROC Determination coefficient heritability Bladder cancer outcome Prognosis Recurrence Progression Genome-wide common SNP Illumina Infinium HumanHap 1 M array Predictive ability


Autoři: E. López De Maturana 1;  A. Picornell 1;  A. Masson-Lecomte 1;  M. Kogevinas 2,10;  M. Márquez 1;  A. Carrato 3;  A. Tardón 4,10;  J. Lloreta 5;  M. García-Closas 6;  D. Silverman 7;  N. Rothman 7;  S. Chanock 7;  F. X. Real 8;  M. E. Goddard 9;  N. Malats 1*;  And On Behalf Of The Sbc/epicuro Study Investigators
Působiště autorů: Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Centre (CNIO), C/Melchor Fernández, Almagro , 80 , Madrid, Spain 1;  Centre for Research in Environmental Epidemiology (CREAL), Parc de Salut Mar, Barcelona, Spain 2;  Servicio de Oncología, Hospital Universitario Ramon y Cajal, Madrid, and Servicio de Oncología, Hospital Universitario de Elche, Elche, Spain 3;  Department of Preventive Medicine Universidad de Oviedo, Oviedo, Spain 4;  Parc de Salut Mar and Departament of Pathology, Hospital del Mar - IMAS, Barcelona, Spain 5;  Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK 6;  Division of Cancer Epidemiology and Genetics, National Cancer Institute, Department of Health and Human Services, Bethesda, Maryland, USA 7;  Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre (CNIO), Madrid, and Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain 8;  Biosciences Research Division, Department of Environment and Primary Industries, Agribio, and Department of Food and Agricultural Systems, University of Melbourne, Melbourne, Australia 9;  CIBERESP, Madrid, Spain. 10
Vyšlo v časopise: BMC Cancer 2016, 351:16
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1186/s12885-016-2361-7

© 2016 de Maturana et al.

Open access
This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
The electronic version of this article is the complete one and can be found online at: http://bmccancer.biomedcentral.com/articles/10.1186/s12885-016-2361-7

Souhrn

Background:
We adapted Bayesian statistical learning strategies to the prognosis field to investigate if genome-wide common SNP improve the prediction ability of clinico-pathological prognosticators and applied it to non-muscle invasive bladder cancer (NMIBC) patients.

Methods:
Adapted Bayesian sequential threshold models in combination with LASSO were applied to consider the time-to-event and the censoring nature of data. We studied 822 NMIBC patients followed-up >10 years. The study outcomes were time-to-first-recurrence and time-to-progression. The predictive ability of the models including up to 171,304 SNP and/or 6 clinico-pathological prognosticators was evaluated using AUC-ROC and determination coefficient.

Results:
Clinico-pathological prognosticators explained a larger proportion of the time-to-first-recurrence (3.1 %) and time-to-progression (5.4 %) phenotypic variances than SNPs (1 and 0.01 %, respectively). Adding SNPs to the clinico-pathological-parameters model slightly improved the prediction of time-to-first-recurrence (up to 4 %). The prediction of time-to-progression using both clinico-pathological prognosticators and SNP did not improve. Heritability (ĥ 2) of both outcomes was <1 % in NMIBC.

Conclusions:
We adapted a Bayesian statistical learning method to deal with a large number of parameters in prognostic studies. Common SNPs showed a limited role in predicting NMIBC outcomes yielding a very low heritability for both outcomes. We report for the first time a heritability estimate for a disease outcome. Our method can be extended to other disease models.

Keywords:
Multimarker models Bayesian statistical learning method Bayesian regression Bayesian LASSO AUC-ROC Determination coefficient heritability Bladder cancer outcome Prognosis Recurrence Progression Genome-wide common SNP Illumina Infinium HumanHap 1 M array Predictive ability


Zdroje

1. Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer. 2010; 127:2893–917.

2. Sievert KD, Amend B, Nagele U, Schilling D, Bedke J, Horstmann M, Hennenlotter J, Kruck S, Stenzl A. Economic aspects of bladder cancer: What are the benefits and costs? World J Urol. 2009;27:295–300.

3. Sylvester RJ, Van Der Meijden APM, Oosterlinck W, Witjes JA, Bouffioux C, Denis L, Newling DWW, Kurth K. Predicting recurrence and progression in individual patients with stage Ta T1 bladder cancer using EORTC risk tables: a combined analysis of 2596 patients from seven EORTC trials. Eur Urol. 2006;49:466–75.

4. Fernandez-Gomez J, Madero R, Solsona E, Unda M, Martinez-Piñeiro L, Gonzalez M, Portillo J, Ojea A, Pertusa C, Rodriguez-Molina J, Camacho JE, Rabadan M, Astobieta A, Montesinos M, Isorna S, Muntañola P, Gimeno A, Blas M, Martinez-Piñeiro JA. Predicting nonmuscle invasive bladder cancer recurrence and progression in patients treated with bacillus Calmette-Guerin: the CUETO scoring model. J Urol. 2009;182:2195–203.

5. Sylvester RJ. How well can you actually predict which non-muscle-invasive bladder cancer patients will progress? Eur Urol. 2011;60:431–3.

6. Thomas F, Rosario DJ, Rubin N, Goepel JR, Abbod MF, Catto JWF. The longterm outcome of treated high-risk nonmuscle-invasive bladder cancer: time to change treatment paradigm? Cancer. 2012;118:5525–34.

7. Grotenhuis AJ, Dudek AM, Verhaegh GW, Witjes JA, Aben KK, van der Marel SL, Vermeulen SH, Kiemeney LA. Prognostic relevance of urinary bladder cancer susceptibility loci. PLoS One. 2014;9:e89164.

8. Chen M, Hildebrandt MAT, Clague J, Kamat AM, Picornell A, Chang J, Zhang X, Izzo J, Yang H, Lin J, Gu J, Chanock S, Kogevinas M, Rothman N, Silverman DT, Garcia-Closas M, Barton Grossman H, Dinney CP, Malats N, Wu X. Genetic variations in the sonic hedgehog pathway affect clinical outcomes in nonmuscle-invasive bladder cancer. Cancer Prev Res. 2010;3:1235–45.

9. Yang J, Benyamin B, McEvoy BP, Gordon S, Henders AK, et al. Common {SNPs} explain a large proportion of the heritability for human height. Nat Gen. 2010;42:565–9.

10. Makowsky R, Pajewski NM, Klimentidis YC, Vazquez AI, Duarte CW, Allison DB, de los Campos G. Beyond missing heritability: prediction of complex traits. PLoS Genet. 2011;7:e1002051.

11. Picornell AC. Genomewide pronostic study in bladder cancer. 2013.

12. Liaw A, Wiener M. Package “randomForest.”. 2015.

13. Albert JH, Chib S. Sequential ordinal modeling with applications to survival data. Biometrics. 2001;57:829–36.

14. Visscher PM, Goddard ME. Genetic parameters for milk yield, survival, workability, and type traits for Australian dairy cattle. J Dairy Sci. 1995;78:205–20.

15. Gonzalez-Recio O, Alenda R. Genetic relationship of discrete-time survival with fertility and production in dairy cattle using bivariate models. Genet Evol. 2007;39(0999-193X (Print):391–404.

16. Gianola D, Sorensen D. Quantitative genetic models for describing simultaneous and recursive relationships between phenotypes. Genetics. 2004;167:1407–24.

17. Park T, Casella G. The Bayesian lasso. J Am Stat Assoc. 2008;103:681–6.

18. De Los CG, Naya H, Gianola D, Crossa J, Legarra A, Manfredi E, Weigel K, Cotes JM. Predicting quantitative traits with regression models for dense molecular markers and pedigree. Genetics. 2009;182:375–85.

19. de Maturana EL, Chanok SJ, Picornell AC, Rothman N, Herranz J, Calle ML, García-Closas M, Marenne G, Brand A, Tardón A, Carrato A, Silverman DT, Kogevinas M, Gianola D, Real FX, Malats N. Whole genome prediction of bladder cancer risk with the Bayesian LASSO. Genet Epidemiol. 2014;38:467–76.

20. Hastie T, Tibshirani R, Friedman J. The elements of statistical learning: data mining, inference, and prediction. 2009.

21. Lee SH, Goddard ME, Wray NR, Visscher PM. A better coefficient of determination for genetic profile analysis. Genet Epidemiol. 2012;36:214–24.

22. Di Martino E, Tomlinson DC, Knowles MA. A decade of FGF receptor research in bladder cancer: past, present, and future challenges. Adv Urol. 2012;2012:429213.

23. Karaoglu I, van der Heijden AG, Witjes JA. The role of urine markers, white light cystoscopy and fluorescence cystoscopy in recurrence, progression and follow-up of non-muscle invasive bladder cancer. World J Urol. 2014;32:651–9.

24. Hernández V, De La Peña E, Martin MD, Blázquez C, Diaz FJ, Llorente C. External validation and applicability of the EORTC risk tables for nonmuscle-invasive bladder cancer. World J Urol. 2011;29:409–14.

25. Vedder MM, Márquez M, de Bekker-Grob EW, Calle ML, Dyrskjøt L, Kogevinas M, Segersten U, Malmström P-U, Algaba F, Beukers W, Ørntoft TF, Zwarthoff E, Real FX, Malats N, Steyerberg EW. Risk prediction scores for recurrence and progression of non-muscle invasive bladder cancer: an international validation in primary tumours. PLoS One. 2014;9:e96849.

26. Stenzl A, Cowan NC, De Santis M, Kuczyk MA, Merseburger AS, Ribal MJ, Sherif A, Witjes JA. Treatment of muscle-invasive and metastatic bladder cancer: update of the EAU guidelines. Eur Urol. 2011;59:1009–18.

27. Babjuk M, Oosterlinck W, Sylvester R, Kaasinen E, Böhle A, Palou-Redorta J, Rouprêt M. EAU guidelines on non-muscle-invasive urothelial carcinoma of the bladder, the 2011 update. Eur Urol. 2011;59:997–1008.

28. de Los CG, Sorensen D, Gianola D. Genomic heritability: what is it? PLoS Genet. 2015;11:e1005048.

29. Van Zitteren M, Van Der Net JB, Kundu S, Freedman AN, Van Duijn CM, Janssens ACJW. Genome-based prediction of breast cancer risk in the general population: a modeling study based on metaanalyses of genetic associations. Cancer Epidemiol Biomarkers Prev. 2011;20:9–22.

30. Wacholder S, Hartge P, Prentice R, Garcia-Closas M, Feigelson HS, Diver WR, Thun MJ, Cox DG, Hankinson SE, Kraft P, Rosner B, Berg CD, Brinton L a, Lissowska J, Sherman ME, Chlebowski R, Kooperberg C, Jackson RD, Buckman DW, Hui P, Pfeiffer R, Jacobs KB, Thomas GD, Hoover RN, Gail MH, Chanock SJ, Hunter DJ. Performance of common genetic variants in breastcancer risk models. N Engl J Med. 2010;362:986–93.

Štítky
Detská onkológia Onkológia
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#