#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Antimicrobial agents – optimising the ecological balance


Background:
There is no more challenging a group of pharmaceuticals than antimicrobials. With the antibiotic era came great optimism as countless deaths were prevented from what were previously fatal conditions. Although antimicrobial resistance was quickly identified, the abundance of antibiotics entering the market helped cement attitudes of arrogance as the “battle against pestilence appeared won”. Opposite emotions soon followed as many heralded the return of the pre-antibiotic era, suggesting that the “antibiotic pipeline had dried up” and that our existing armament would soon be rendered worthless.

Discussion:
In reality, humans overrate their ecological importance. For millions of years there has been a balance between factors promoting bacterial survival and those disturbing it. The first half century of the “antibiotic era” was characterised by a cavalier attitude disturbing the natural balance; however, recent efforts have been made through several mechanisms to respond and re-strengthen the antimicrobial armament. Such mechanisms include a variety of incentives, educational efforts and negotiations. Today, there are many more “man-made” factors that will determine a new balance or state of ecological harmony.

Conclusion:
Antibiotics are not a panacea nor will they ever be inutile. New resistance mechanisms will be identified and new antibiotics will be discovered, but most importantly, we must optimise our application of these extraordinary “biological tools”; therein lays our greatest challenge – creating a society that understands and respects the determinants of the effectiveness of antibiotics.

Keywords:
Antibiotic stewardship, Antibiotic policy, Antibiotic pipeline, Antimicrobials Antibiotics


Autoři: Sze-Ann Woon 1;  Dale Fisher 1,2,3*
Působiště autorů: Division of Infectious Diseases, University Medicine Cluster, National University Hospital, Singapore, Singapore. 1;  Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore. 2;  National University Health System, NUHS Tower Block, 1E Kent Ridge Road, Level 10, Singapore 119228, Singapore. 3
Vyšlo v časopise: BMC Medicine 2016, 14:114
Kategorie: Opinion
prolekare.web.journal.doi_sk: https://doi.org/10.1186/s12916-016-0661-z

© 2016 The Author(s). Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
The electronic version of this article is the complete one and can be found online at: https://bmcmedicine.biomedcentral.com/articles/10.1186/s12916-016-0661-z

Souhrn

Background:
There is no more challenging a group of pharmaceuticals than antimicrobials. With the antibiotic era came great optimism as countless deaths were prevented from what were previously fatal conditions. Although antimicrobial resistance was quickly identified, the abundance of antibiotics entering the market helped cement attitudes of arrogance as the “battle against pestilence appeared won”. Opposite emotions soon followed as many heralded the return of the pre-antibiotic era, suggesting that the “antibiotic pipeline had dried up” and that our existing armament would soon be rendered worthless.

Discussion:
In reality, humans overrate their ecological importance. For millions of years there has been a balance between factors promoting bacterial survival and those disturbing it. The first half century of the “antibiotic era” was characterised by a cavalier attitude disturbing the natural balance; however, recent efforts have been made through several mechanisms to respond and re-strengthen the antimicrobial armament. Such mechanisms include a variety of incentives, educational efforts and negotiations. Today, there are many more “man-made” factors that will determine a new balance or state of ecological harmony.

Conclusion:
Antibiotics are not a panacea nor will they ever be inutile. New resistance mechanisms will be identified and new antibiotics will be discovered, but most importantly, we must optimise our application of these extraordinary “biological tools”; therein lays our greatest challenge – creating a society that understands and respects the determinants of the effectiveness of antibiotics.

Keywords:
Antibiotic stewardship, Antibiotic policy, Antibiotic pipeline, Antimicrobials Antibiotics


Zdroje

1. Centers for Disease Control and Prevention (CDC). Antibiotic Resistance Threats in the United States. 2013. http://www.cdc.gov/drugresistance/threat-report-2013/pdf/ar-threats-2013-508.pdf. Accessed 11 July 2016.

2. European Centre for Disease Prevention and Control (ECDC). The bacterial challenge: time to react. A Call to Narrow the Gap Between Multidrug-Resistant Bacteria in the EU and the Development of New Antibacterial Agents. ECDC/EMEA Joint Technical Report. 2009. http://ecdc.europa.eu/en/publications/Publications/0909_TER_The_Bacterial_Challenge_Time_to_React.pdf. Accessed 11 July 2016.

3. Briceland LL, Nightingale CH, Quintiliani R, Cooper BW, Smith KS. Antibiotic streamlining from combination therapy to monotherapy utilizing an interdisciplinary approach. Arch Intern Med. 1988;148:2019–22.

4. Fraser GL, Stogsdill P, Dickens Jr JD, Wennberg DE, Smith Jr RP, Prato BS. Antibiotic optimization. An evaluation of patient safety and economic outcomes. Arch Intern Med. 1997;157:1689–94.

5. Fraser GL, Stogsdill P, Owens Jr RC. Antimicrobial stewardship initiatives: a programmatic approach to optimizing antimicrobial use. In: Owens Jr RC, Ambrose PG, Nightingale CH, editors. Antibiotic Optimization: Concepts and Strategies in Clinical Practice. 1st ed. New York: Marcel Dekker; 2005. p. 261–326.

6. Glowacki RC, Schwartz DN, Itokazu GS, Wisniewski MF, Kieszkowski P, Weinstein RA. Antibiotic combinations with redundant antimicrobial spectra: clinical epidemiology and pilot intervention of computer-assisted surveillance. Clin Infect Dis. 2003;37:59–64.

7. Owens Jr RC, Fraser GL, Stogsdill P. Antimicrobial stewardship programmes as a means to optimize antimicrobial use. Insights from the Society of Infectious Diseases Pharmacists. Pharmacotherapy. 2004;24:896–908.

8. Collignon P, Athukorala PC, Senanayake S, Khan F. Antimicrobial resistance: the major contribution of poor governance and corruption to this growing problem. PLoS One. 2015;10(3), e0116746.

9. Morgan DJ, Okeke IN, Laxminarayan R, Perencevich EN, Weisenberg S. Non-prescription antimicrobial use worldwide: a systematic review. Lancet Infect Dis. 2011;11(9):692–701.

10. Bavestrello L, Cabello A, Casanova D. Impact of regulatory measures in the trends of community consumption of antibiotics in Chile. Rev Med Chil. 2002;130:1265–72.

11. Park S, Soumerai SB, Adams AS, Finkelstein JA, Jang S, Ross-Degnan D. Antibiotic use following a Korean national policy to prohibit medication dispensing by physicians. Health Policy Plan. 2005;20:302–9.

12. Okeke IN, Lamikanra A. Quality and bioavailability of tetracycline capsules in a Nigerian semiurban community. Int J Antimicrob Agents. 1995;5:245–50.

13. Taylor RB, Shakoor O, Behrens RH. Drug quality, a contributor to drug resistance? Lancet. 1995;346:122.

14. Land T. Combating counterfeit drugs. Nature. 1992;355:192.

15. Thamlikitkul V. Antibiotic dispensing by drug store personnel in Bangkok. Thailand J Antimicrob Chemother. 1988;21:125–31.

16. Bartoloni A, Cutts F, Leoni S, Austin CC, Mantella A, Guglielmetti P, et al. Patterns of antimicrobial use and antimicrobial resistance among healthy children in Bolivia. Trop Med Int Health. 1998;3:116–23.

17. Awad A, Eltayeb I, Matowe L, Thalib L. Self-medication with antibiotics and antimalarials in the community of Khartoum state. Sudan J Pharm Pharm Sci. 2005;8:326–31.

18. Stokstad ELR, Jukes TH. Further observations on the “animal protein factor.”. Proc Soc Exp Biol Med. 1950;73(3):523–8.

19. Stahly TS, Cromwell GL, Monegue HJ. Effects of dietary inclusion of copper and(or) antibiotics on the performance of weanling pigs. J Anim Sci. 1980;51:1347–51.

20. Cho I, Yamanishi S, Cox L, Methé BA, Zavadil J, Li K, et al. Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature. 2012;488:621–6.

21. Alexander TW, Yanke LJ, Topp E, Olson ME, Read RR, Morck DW, McAllister TA. Effect of subtherapeutic administration of antibiotics on the prevalence of antibiotic-resistant Escherichia coli bacteria in feedlot cattle. Appl Environ Microbiol. 2008;74(14):4405–16.

22. Maron DF, Smith TJ, Nachman KE. Restrictions on antimicrobial use in food animal production: an international regulatory and economic survey. Global Health. 2013;9:48.

23. Liu Y-Y, Wang T, Walsh TR, Yi LX, Zhang R, Spencer J, et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis. 2016;16(2):161–8. doi:10.1016/S1473-3099(15)00424-7.

24. Lowes R. Obama Takes Antibiotics Fight From Pharmacy to Farm. Medscape Jun. 2015;02. http://www.medscape.com/viewarticle/845820. Accessed 11 July 2016.

25. Goodridge LD, Bisha B. Phage-based biocontrol strategies to reduce foodborne pathogens in foods. Bacteriophage. 2011;1(3):130–7.

26. Balogh B, Jones JB, Iriarte FB, Momol MT. Phage therapy for plant disease control. Curr Pharm Biotechnol. 2010;11(1):48–57.

27. Kadouri DE, To K, Shanks RM, Doi Y. Predatory bacteria: a potential ally against multidrug-resistant Gram-negative pathogens. PLoS One. 2013;8(5), e63397.

28. Allen HK, Trachsel J, Looft T, Casey TA. Finding alternatives to antibiotics. Ann N Y Acad Sci. 2014;1323(1):91–100.

29. Boucher HW, Talbot GH, Benjamin Jr DK, Bradley J, Guidos RJ, Jones RN, et al. 10 x '20 Progress – development of new drugs active against gramnegative bacilli: an update from the Infectious Diseases Society of America. Clin Infect Dis. 2013;56(12):1685–94.

30. Lewis K. Platforms for antibiotic discovery. Nat Rev Drug Discov. 2013;12(5):371–87.

31. The Infectious Diseases Society of America (IDSA). Bad bugs, no drugs: as antibiotic discovery stagnates, a public health crisis brews. 2004. http://www.idsociety.org/uploadedFiles/IDSA/Policy_and_Advocacy/Current_Topics_and_Issues/Advancing_Product_Research_and_Development/Bad_Bugs_No_Drugs/Statements/As%20Antibiotic%20Discovery%20Stagnates%20A%20Public%20Health%20Crisis%20Brews.pdf. Accessed 11 July 2016.

32. World Health Organization. Draft global action plan on antimicrobial resistance. 2015. http://www.who.int/drugresistance/global_action_plan/ongoing_activities/en. Accessed 11 July 2016.

33. Review on Antimicrobial Resistance. Tackling a global health crisis: initial steps. 2015. http://amr-review.org/sites/default/files/Report-52.15.pdf. Accessed 11 July 2016.

34. The White House. National action plan for combatting antibiotic resistant bacteria. 2015. https://www.whitehouse.gov/sites/default/files/docs/national_action_plan_for_combating_antibotic-resistant_bacteria.pdf. Accessed 11 July 2016.

35. Mossialos E, Morel CM, Edwards S, Berenson J, Gemmill-Toyama M, Brogan D. Policies and Incentives for Promoting Innovation in Antibiotic Research, European Observatory on Health Systems and Policies. 2010. http://www.euro.who.int/__data/assets/pdf_file/0011/120143/E94241.pdf. Accessed 11 July 2016.

36. Morel CM, Mossialos E. Stoking the antibiotic pipeline. BMJ. 2010;340:c2115.

37. Munos B. Can open-source R&D reinvigorate drug research? Nat Rev Drug Discov. 2006;5:723–9.

38. Innovative Medicines Initiative. The Innovative Medicines Initiative. 2015. http://www.imi.europa.eu/. Accessed 11 July 2016.

39. New Drugs for Bad Bugs. Combating antibiotic resistance: New Drugs for Bad Bugs. 2015. http://www.nd4bb.eu. Accessed 11 July 2016.

40. DRIVE-AB. DRIVE-AB: Re-investment in R&D and responsible antibiotic use. 2014. http://drive-ab.eu. Accessed 11 July 2016.

41. US Congress. Generating Antibiotic Incentives Now Act of 2011. 112th Cong., H.R. 2182/S. 1734. https://www.govtrack.us/congress/bills/112/hr2182. Accessed 11 July 2016.

42. Infectious Diseases Society of America. Limited population antibacterial drug (LPAD) approval mechanism. 2012. http://www.idsociety.org/2012_lpad_proposal_backing. Accessed 11 July 2016.

43. Energy US, Committee C. 21st Century Cures Act Discussion Document White Paper, 114th US Congress. 2015. http://energycommerce.house.gov/sites/republicans.energycommerce.house.gov/files/114/Analysis/Cures/20150127-Cures-Discussion-Document.pdf. Accessed 11 July 2016.

44. Kieny M. Current WHO Model for Development/Preservation of New Antibiotics. Technical Consultation on Innovative Models for New Antibiotics' Development and Preservation. 2014. http://who.int/phi/implementation/9_current_who_model_for_development_preservation_ new_antibiotics.pdf?ua=1. Accessed 11 July 2016.

45. Kieny M. A Publicly Financed Global Consortium for R&D to Fight Antibiotic Resistance. Technical Consultation on Innovative Models for New Antibiotics' Development and Preservation. 2014. http://www.who.int/phi/implementation/9_infobrief_current_who_model_for_development_preservation_new_antibiotics.pdf. Accessed 11 July 2016.

46. Renwick MJ, Brogan DM, Mossialos E. A systematic review and critical assessment of incentive strategies for discovery and development of novel antibiotics. J Antibiot (Tokyo). 2016;69(2):73–88. doi:10.1038/ja.2015.98.

47. Boucher HW, Wilcox M, Talbot GH, Puttagunta S, Dunne MW. Once-weekly dalbavancin versus daily conventional therapy for skin infection. N Engl J Med. 2014;370:2169–79.

48. Corey GR, Kabler H, Mehra P, Gupta S, Overcash JS, Porwal A, et al. Single-dose oritavancin in the treatment of acute bacterial skin infections. N Engl J Med. 2014;370:2180–90.

49. Corey GR, Good S, Jiang H, Moeck G, Wikler M, Green S, et al. Single-dose oritavancin versus 7-10 days of vancomycin in the treatment of gram-positive acute bacterial skin and skin structure infections: the SOLO II noninferiority study. Clin Infect Dis. 2015;60(2):254–62.

50. Moran GJ, Fang E, Corey GR, Das AF, De Anda C, Prokocimer P. Tedizolid for 6 days versus linezolid for 10 days for acute bacterial skin and skin-structure infections (ESTABLISH-2): a randomised, double-blind, phase 3, non-inferiority trial. Lancet Infect Dis. 2014;14:696–705.

51. Lucasti C, Hershberger E, Miller B, Yankelev S, Steenbergen J, Friedland I, Solomkin J. Multicenter, double-blind, randomized, phase II trial to assess the safety and efficacy of ceftolozane-tazobactam plus metronidazole compared with meropenem in adult patients with complicated intraabdominal infections. Antimicrob Agents Chemother. 2014;58(9):5350–7.

52. Wagenlehner FM, Umeh O, Steenbergen J, Yuan G, Darouiche RO. Ceftolozane-tazobactam compared with levofloxacin in the treatment of complicated urinary-tract infections, including pyelonephritis: a randomised, double-blind, phase 3 trial (ASPECT-cUTI). Lancet. 2015;385(9981):1949–56.

53. Mawal Y, Critchley IA, Riccobene TA, Talley AK. Ceftazidime-avibactam for the treatment of complicated urinary tract infections and complicated intra-abdominal infections. Expert Rev Clin Pharmacol. 2015;8(6):691–707.

54. The Pew Charitable Trusts. Tracking the Pipeline of Antibiotics in Development. http://www.pewtrusts.org/en/research-and-analysis/issue-briefs/2014/03/12/tracking-the-pipeline-of-antibiotics-in-development. Accessed 11 July 2016.

55. Sansom C. Phage therapy for severe infections tested in the first multicentre trial. Lancet Infect Dis. 2015;15:1384–5.

56. Viertel T, Ritter K, Horz H. Viruses versus bacteria—novel approaches to phage therapy as a tool against multidrug-resistant pathogens. J Antimicrob Chemother. 2014;69(9):2326–36.

57. Ling LL, Schneider T, Peoples AJ, Spoering AL, Engels I, Conlon BP, et al. A new antibiotic kills pathogens without detectable resistance. Nature. 2015;517:455–9.

58. Outterson K. New Business Models for Sustainable Antibiotics, Chatham House. 2014. http://www.chathamhouse.org/sites/files/chathamhouse/public/Research/Global%20Health/0214SustainableAntibiotics.pdf. Accessed 11 July 2016.

59. Lipsitch M, Samore MH. Antimicrobial use and antimicrobial resistance: a population perspective. Emerg Infect Dis. 2002;8:347–54.

60. Harbarth S, Samore MH. Antimicrobial resistance determinants and future control. Emerg Infect Dis. 2005;11:794–801.

61. Gonzales R, Malone DC, Maselli JH, Sande MA. Excessive antibiotic use for acute respiratory infections in the United States. Clin Infect Dis. 2001;33:757–62.

62. Akkerman AE, Kuyvenhoven MM, van der Wouden JC, Verheij TJ. Analysis of under- and overprescribing of antibiotics in acute otitis media in general practice. J Antimicrob Chemother. 2005;56:569–74.

63. Sarkar P, Gould IM. Antimicrobial agents are societal drugs. How should this influence prescribing? Drugs. 2006;66(7):893–901.

64. Cai T, Nesi G, Mazzoli S, Meacci F, Lanzafame P, Caciagli P, et al. Asymptomatic bacteriuria treatment is associated with a higher prevalence of antibiotic resistant strains in women with urinary tract infections. Clin Inf Dis. 2015;61(11):1655–61.

65. Butler CC, Rollnick S, Pill R, Maggs-Rapport F, Stott N. Understanding the culture of prescribing: qualitative study of general practitioners’ and patients’ perceptions of antibiotics for sore throats. BMJ. 1998;317:637–42.

66. Scott JG, Cohen D, DiCicco-Bloom B, Orzano AJ, Jaen CR, Crabtree BF. Antibiotic use in acute respiratory infections and the ways patients pressure physicians for a prescription. J Fam Pract. 2001;50:853–58.

67. Lam TP, Lam KF. What are the non-biomedical reasons which make family doctors over-prescribe antibiotics for upper respiratory tract infection in a mixed private/public Asian setting? J Clin Pharm Ther. 2003;28(3):197–201.

68. World Health Organization. Worldwide Country Situation Analysis: Response to Antimicrobial Resistance. http://www.who.int/drugresistance/documents/situationanalysis/en/. Accessed 11 July 2016.

69. Roque F, Herdeiro MT, Soares S, Teixeira Rodrigues A, Breitenfeld L, Figueiras A. Educational interventions to improve prescription and dispensing of antibiotics: a systematic review. BMC Public Health. 2014;14:1276.

70. Huttner B, Goossens H, Verheij T, Harbarth S. Characteristics and outcomes of public campaigns aimed at improving the use of antibiotics in outpatients in high-income countries. Lancet Infect Dis. 2010;10:17–31.

71. Lambert MF, Masters GA, Brent SL. Can mass media campaigns change antimicrobial prescribing? A regional evaluation study. J Antimicrob Chemother. 2007;59:537–43.

72. Michie S, van Stralen M, West R. The behaviour change wheel: a new method for characterising and designing behaviour change interventions. Implement Sci. 2011;6:42.

Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#