Antibiotics, obesity and the link to microbes - what are we doing to our children?
Background:
Childhood obesity and overweight are among the greatest health challenges in the pediatric population. Obese individuals exhibit marked differences in the composition of the intestinal microbial community as compared to lean subjects. These changes in the gut microbiota precede the clinical manifestation of overweight. Convincing experimental data suggest a causal role for intestinal microbes in the development of obesity and associated metabolic disorders.
Discussion:
Exposure to antibiotics exerts a devastating impact on the intestinal microbial community. Epidemiological studies have provided evidence indicating that early or repeated childhood exposure to antibiotics is associated with increased risk of overweight later in childhood but the causal role of this exposure in obesity development is not clear. However, data from studies conducted using experimental animal models indicate that antibiotic-induced changes in the gut microbiota influence host metabolism and lead to fat accumulation. The intestinal microbiota perturbation caused by antibiotic exposure in the perinatal period appears to program the host to an obesity-prone metabolic phenotype, which persists after the antibiotics have been discontinued and the gut microbiota has recovered. These observations may have serious implications in the clinical setting, since a substantial number of human infants are subjected to antibiotic treatment through the mother during delivery or directly in the immediate neonatal period. The clinical significance of these exposures remains unknown.
Summary:
Prudent use of antibiotics is paramount not only to reduce the propagation of antibiotic-resistant organisms but also to minimize the potentially detrimental long-term metabolic consequences of early antibiotic exposure. Improved means of reliably detecting neonates with bacterial infection would reduce the need for empirical antibiotic exposure initiated based on nonspecific symptoms and signs or risk factors. Finally, means to support healthy microbial contact in neonates and infants requiring antibiotic treatment are needed.
Keywords:
Antibiotics, Gut microbiota, Infant, Neonate, Obesity, Overweight
Autoři:
Olli Turta; Samuli Rautava *
Působiště autorů:
Department of Paediatrics, University of Turku and Turku University Hospital, Turku, Finland
Vyšlo v časopise:
BMC Medicine 2016, 14:57
Kategorie:
Opinion
prolekare.web.journal.doi_sk:
https://doi.org/10.1186/s12916-016-0605-7
© 2016 Turta and Rautava. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
The electronic version of this article is the complete one and can be found online at: https://bmcmedicine.biomedcentral.com/articles/10.1186/s12916-016-0605-7
Souhrn
Background:
Childhood obesity and overweight are among the greatest health challenges in the pediatric population. Obese individuals exhibit marked differences in the composition of the intestinal microbial community as compared to lean subjects. These changes in the gut microbiota precede the clinical manifestation of overweight. Convincing experimental data suggest a causal role for intestinal microbes in the development of obesity and associated metabolic disorders.
Discussion:
Exposure to antibiotics exerts a devastating impact on the intestinal microbial community. Epidemiological studies have provided evidence indicating that early or repeated childhood exposure to antibiotics is associated with increased risk of overweight later in childhood but the causal role of this exposure in obesity development is not clear. However, data from studies conducted using experimental animal models indicate that antibiotic-induced changes in the gut microbiota influence host metabolism and lead to fat accumulation. The intestinal microbiota perturbation caused by antibiotic exposure in the perinatal period appears to program the host to an obesity-prone metabolic phenotype, which persists after the antibiotics have been discontinued and the gut microbiota has recovered. These observations may have serious implications in the clinical setting, since a substantial number of human infants are subjected to antibiotic treatment through the mother during delivery or directly in the immediate neonatal period. The clinical significance of these exposures remains unknown.
Summary:
Prudent use of antibiotics is paramount not only to reduce the propagation of antibiotic-resistant organisms but also to minimize the potentially detrimental long-term metabolic consequences of early antibiotic exposure. Improved means of reliably detecting neonates with bacterial infection would reduce the need for empirical antibiotic exposure initiated based on nonspecific symptoms and signs or risk factors. Finally, means to support healthy microbial contact in neonates and infants requiring antibiotic treatment are needed.
Keywords:
Antibiotics, Gut microbiota, Infant, Neonate, Obesity, Overweight
Zdroje
1. Ogden CL, Carroll MD, Kit BK, Flegal KM. Prevalence of childhood and adult obesity in the United States, 2011-2012. JAMA. 2014;311:806–14.
2. Gurnani M, Birken C, Hamilton J. Childhood obesity: causes, consequences, and management. Pediatr Clin N Am. 2015;62:821–40.
3. Monasta L, Batty GD, Cattaneo A, Lutje V, Ronfani L, Van Lenthe FJ, et al. Early life determinants of overweight and obesity. Obes Rev. 2010;11:695–708.
4. Tremaroli V, Bäckhed F. Functional interactions between the gut microbiota and host metabolism. Nature. 2012;489:242–9.
5. Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with obesity. Nature. 2006;444:1022–3.
6. Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, et al. A core gut microbiome in obese and lean twins. Nature. 2009;457:480–4.
7. Turnbaugh PJ, Bäckhed F, Fulton L, Gordon JI. Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe. 2008;3:213–23.
8. De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A. 2010;107:14691–6.
9. Agus A, Denizot J, Thévenot J, Martinez-Medina M, Massier S, Sauvanet P, et al. Western diet induces a shift in microbiota composition enhancing susceptibility to Adherent-Invasive E. coli infection and intestinal inflammation. Sci Rep. 2016;6:19032.
10. Lang JM, Eisen JA, Zivkovic AM. The microbes we eat: abundance and taxonomy of microbes consumed in a day’s worth of meals for three diettypes. PeerJ. 2014;2:e659.
11. Ridaura VK, Faith JJ, Rey FE, Cheng J, Duncan AE, Kau AL, et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science. 2013;341:1241214.
12. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis EL, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444:1027–31.
13. Bäckhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, et al. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A. 2004;101:15718–23.
14. Vael C, Verhulst SL, Nelen V, Goossens H, Desager KN. Intestinal microflora and body mass index during the first three years of life: an observational study. Gut Pathog. 2011;3:8.
15. Kalliomäki M, Collado MC, Salminen S, Isolauri E. Early differences in fecal microbiota composition in children may predict overweight. Am J Clin Nutr. 2008;87:534–8.
16. Dogra S, Sakwinska O, Soh SE, Ngom-Bru C, Brück WM, Berger B, et al. Dynamics of infant gut microbiota are influenced by delivery mode and gestational duration and are associated with subsequent adiposity. MBio. 2015;6:e02419-14.
17. Zhang C, Yin A, Li H, Wang R, Wu G, Shen J, et al. Dietary modulation of gut microbiota contributes to alleviation of both genetic and simple obesity in children. EBioMedicine. 2015;2:966–82.
18. Cox L, Blaser M. Antibiotics in early life and obesity. Nat Rev Endocrinol. 2015;11:182–90.
19. Stokholm J, Schjørring S, Pedersen L, Bischoff AL, Følsgaard N, Carson CG, et al. Prevalence and predictors of antibiotic administration during pregnancy and birth. PLoS One. 2013;8:e82932.
20. Persaud RR, Azad MB, Chari RS, Sears MR, Becker AB, Kozyrskyj AL. Perinatal antibiotic exposure of neonates in Canada and associated risk factors: a population-based study. J Matern Fetal Neonatal Med. 2015;28:1190–5.
21. Polin RA, Committee on Fetus and Newborn, Management of neonates with suspected or proven early-onset bacterial sepsis. Pediatrics. 2012;129:1006–15.
22. Simonsen KA, Anderson-Berry AL, Delair SF, Davies HD. Early-onset neonatal sepsis. Clin Microbiol Rev. 2014;27:21–47.
23. Dethlefsen L, Huse S, Sogin ML, Relman DA. The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol. 2008;6:e280.
24. Dethlefsen L, Relman DA. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc Natl Acad Sci U S A. 2011;108 Suppl 1:4554–61.
25. Jernberg C, Löfmark S, Edlund C, Jansson JK. Long-term ecological impacts of antibiotic administration on the human intestinal microbiota. ISME J. 2007;1:56–66.
26. Fouhy F, Guinane CM, Hussey S, Wall R, Ryan CA, Dempsey EM, et al. High-throughput sequencing reveals the incomplete, short-term recovery of infant gut microbiota following parenteral antibiotic treatment with ampicillin and gentamicin. Antimicrob Agents Chemother. 2012;56:5811–20.
27. Arboleya S, Sánchez B, Milani C, Duranti S, Solís G, Fernández N, et al. Intestinal Microbiota Development in Preterm Neonates and Effect of Perinatal Antibiotics. J Pediatr. 2015;166:538–44.
28. Greenwood C, Morrow AL, Lagomarcino AJ, Altaye M, Taft DH, Yu Z, et al. Early empiric antibiotic use in preterm infants is associated with lower bacterial diversity and higher relative abundance of Enterobacter. J Pediatr. 2014;165:23–9.
29. Ajslev TA, Andersen CS, Gamborg M, Sørensen TI, Jess T. Childhood overweight after establishment of the gut microbiota: the role of delivery mode, pre-pregnancy weight and early administration of antibiotics. Int J Obes (Lond). 2011;35:522–9.
30. Trasande L, Blustein J, Liu M, Corwin E, Cox LM, Blaser MJ. Infant antibiotic exposures and early-life body mass. Int J Obes (Lond). 2013;37:16–23.
31. Saari A, Virta LJ, Sankilampi U, Dunkel L, Saxen H. Antibiotic exposure in infancy and risk of being overweight in the first 24 months of life. Pediatrics. 2015;135:617–26.
32. Azad MB, Bridgman SL, Becker AB, Kozyrskyj AL. Infant antibiotic exposure and the development of childhood overweight and central adiposity. Int J Obes (Lond). 2014;38:1290–8.
33. Bailey LC, Forrest CB, Zhang P, Richards TM, Livshits A, DeRusso PA. Association of antibiotics in infancy with early childhood obesity. JAMA Pediatr. 2014;68:1063–9.
34. Rautava S, Ruuskanen O, Ouwehand A, Salminen S, Isolauri E. The hygiene hypothesis of atopic disease - an extended version. J Pediatr Gastroenterol Nutr. 2004;38:378–88.
35. Semic-Jusufagic A, Belgrave D, Pickles A, Telcian AG, Bakhsoliani E, Sykes A, et al. Assessing the association of early life antibiotic prescription with asthma exacerbations, impaired antiviral immunity, and genetic variants in 17q21: a population-based birth cohort study. Lancet Respir Med. 2014;2:621–30.
36. Hviid A, Svanström H, Frisch M. Antibiotic use and inflammatory bowel diseases in childhood. Gut. 2011;60:49–54.
37. Horton DB, Scott FI, Haynes K, Putt ME, Rose CD, Lewis JD, et al. Antibiotic exposure, infection, and the development of pediatric psoriasis: a nested case-control study. JAMA Dermatol. 2016;152:191–9.
38. Dominguez-Bello MG, Costello EK, Contreras M, Magris M, Hidalgo GFiere N, et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci U S A. 2010;107:11971–5.
39. Salminen S, Gibson GR, McCartney AL, Isolauri E. Influence of mode of delivery on gut microbiota composition in seven year old children. Gut. 2004;53:1388–9.
40. Kuhle S, Tong OS, Woolcott CG. Association between caesarean section and childhood obesity: a systematic review and meta-analysis. Obes Rev. 2015;16:295–303.
41. Smaill FM, Grivell RM. Antibiotic prophylaxis versus no prophylaxis for preventing infection after cesarean section. Cochrane Database Syst Rev. 2014;10:CD007482.
42. Mueller NT, Whyatt R, Hoepner L, Oberfield S, Dominguez-Bello MG, Widen EM, et al. Prenatal exposure to antibiotics, cesarean section and risk of childhood obesity. Int J Obes (Lond). 2015;39:665–70.
43. Cho I, Yamanishi S, Cox L, Methé BA, Zavadil J, Li K, et al. Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature. 2012;488:621–6.
44. Cox LM, Yamanishi S, Sohn J, Alekseyenko AV, Leung JM, Cho I, et al. Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences. Cell. 2014;158:705–21.
45. Lee GC, Reveles KR, Attridge RT, Lawson KA, Mansi IA, Lewis 2nd JS, et al. Outpatient antibiotic prescribing in the United States: 2000 to 2010. BMC Med. 2014;12:96.
46. Hempel S, Newberry SJ, Maher AR, Wang Z, Miles JN, Shanman R, et al. Probiotics for the prevention and treatment of antibiotic-associated diarrhea: a systematic review and meta-analysis. JAMA. 2012;307:1959–69.
Článok vyšiel v časopise
BMC Medicine
2016 Číslo 57
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Fixní kombinace paracetamol/kodein nabízí synergické analgetické účinky
- Masturbační chování žen v ČR − dotazníková studie
- Těžké menstruační krvácení může značit poruchu krevní srážlivosti. Jaký management vyšetření a léčby je v takovém případě vhodný?
Najčítanejšie v tomto čísle