Targeted drug delivery system: potential application to resveratrol
Authors:
Hassan Farghali; Ludmila Kameníková
Published in the journal:
Čes. slov. Farm., 2017; 66, 76-82
Category:
Přehledy a odborná sdělení
Summary
Drug delivery system (DDS) is intended to increasing effectiveness of drugs through targeted distribution and to reducing of unwanted effects. In this mini-review, the basic principles of nanotechnology that were developed for DDS were reported including sections on the present research in key areas that are important for future investigations. Attention is paid on resveratrol as a model phytochemical with interesting pharmacologic profile which was demonstrated in great numbers of studies and for its wide use as supplemental therapy. Due to complicated pharmacokinetic profile of resveratrol that is characterized by very low bioavailability in spite of high oral absorption, the effects of resveratrol is being studied in new nanotechnology preparations of pharmaceutical formulation.
Herein we report on results of present in vitro and in vivo investigations with resveratrol in new types of drug formulations using different nanoparticles as liposomes, solid lipid particles, cyclodextrins and micelles.
Key words:
targeted drug delivery • nanotechnology • resveratrol
Zdroje
1. Král V. Život je geniální projekt. Za obzorem Vyd. Advent Orion s.r.o., 2013; 1, 1–4.
2. Pamornpathomkul B., Wongkajorsilp A., Laiwattanapaisal W., Rojanarata T., Opanasopit P., Ngawhirunpat T. A combined approach of hollow microneadles and nanocarriers for skin immunization with plastid DNA encoding ovalbumin. Int. J. Nanomedicine 2017; 12, 885–898.
3. Gusta S., Wilder H., Rao A. L. N., Vyllev V. I., Anvari B. Plant virus-resembling optical nano-materials conjugated with Anti-EGFR for targeted cancer imaging. Reporters, dyes, nanoparticles, and molecular probes for biomedical applications IV. 2012; Proceedings of SPIE vol. 8233, No. 82330S.
4. Hwang S. R., Ku S. H., Joo M. K., Kim S. H., Kwon I. C. Theranostic nanomaterials for image-guided gene therapy. MRS Bulletin 2014; 39, 44–50.
5. Neves A. R., Lúcio M., Martins S., Lima J. L., Reis S. Novel resveratrol nanodelivery systems based on lipid nanoparticles to enhance its oral bioavailability. Int. J. Nanomedicine 2013; 8, 177–187.
6. Summerlin N., Soo E.,Thakur S., Qu Zhi. Resveratrol nanoformulations: Challenges and opportunities. Inter. J. Pharmac. 2015; 479, 282–290.
7. Aluyen J. K., Ton Q. N., Tran T., Yang A. E., Gottlieb H. B., Belanger R. A. Resveratrol potential as anticancer agents. J. Diet Supl. 2012; 9, 45–56.
8. Kraft T. E., Parisotto D., Schempp C., Efferth T. Fighting cancer with red wine? Molecular mechanisms of resveratrol. Crit. Rev. Food Sci. Nutr. 2009; 49, 782–799.
9. Yang X., Li X., Ren J. From french paradox to cancer treatment: anti-cancer activities and mechanisms of resveratrol. Anti-Cancer Agents Med. Chem. 2014; 14, 806–825.
10. Farghali H., Kutinová Canová N., Lekic N. Resveratrol and related compounds as antioxidants with an allosteric mechanism of action in epigenetic drug targets. Physiol. Res. 2013; 2, 1–13.
11. Vang O., Ahmad N., Baile C. A., Baur J. A., Brown K., Csiszar A., Das D. K., Delmas D., Gottfried C., Lin H. Y. What is new for an old molecule? Systematic Review and Recommendations on the use of resveratrol. Plos One 2011; 6, No. E9881, doi:10.1371.
12. Augustin M. A., Sanguansri L., Lokett T. Nano- and micro-encapsulated systems for enhancing the delivery of resveratrol. Ann. N.Y. Acad. Sci. 2013; 1290, 107–112.
13. Walle T. Biovailability of resveratrol. Ann. N.Y. Acad. Sci. 2011; 1215, 9–15.
14. Rotches-Ribalta M., Andres-Lacueva C., Estruch R., Escribano E., Urpi-Sarda M. Pharmacokinetic of resveratrol metabolic profile in healty humans after moderate consumption of red wine and grape extrakt tablets. Pharmacol. Res. Off. J. Ital. Pharmacol. Soc. 2012; 66, 375–382.
15. Brown V. A., Patel K. R., Viskaduraki M., Crowell J. A., Perloff M., Booth T. D., Vasilinin G., Sen A., Schinas A., Piccirilli G., Brown K., Steward W. P., Gescher A. J., Brenner D. E. Repeat dose study of the cancer chemopreventive agent resveratrol in healthy volunteers: safety, pharmacokinetics, and effect on the insulin-like growth factor axis.Cancer Research 2010; 70, 9003–9011.
16. Almeida L., Vaz-da-Silva M., Falcao A., Soares E., Costa R., Loureiro A. J., Fernandes-Lopes C., Rocha J. P., Nunes T., Wright L., Soares-da-Silva P. Pharmacokinetic and safety profile of trans-resveratrol in a Rosiny multiply-dose study in healthy volunteers. Mol. Nutr. Food Res. 2009; 53, S7–15.
17. Boocock D. J., Faust G. E. S., Patel K. R., Schinas A. M., Brown V. A., Duchařme M. P., Booth T. D., Crowell J. A., Perloff M., Gescher A. J., Steward W. P., Brenner D. E. Phase I dose escalation pharmacokinetic study in healthy volunteer of resveratrol, a potential cancer chemopreventive agent. Cancer Epidemiol. Biomarkers and Prevention 2007; 16, 1246–1252.
18. Rotches-Ribalta M., Andres-Lacueva C., Estruch R., Escribano E., Urpi-Sarda M. Pharmacokinetic of resveratrol metabolic profile in healty humans after moderate consumption of red wine and grape extrakt tablets. Pharmacol. Res. Off. J. Ital. Pharmacol. Soc. 2012; 66, 375–382.
19. Karthikeyan S., Rajendra Prasat N., Ganamani A., Balamurugan E. Anticancer aktivity of resveratrol-loaded gelatin nanoparticles on NCI-H460 non-small cell lung cancer cells. Biomed. Prev. Nutr. 2013; 3, 64–73.
20. Miki H., Uehara N., Kimura A., Sasaki T., Yuri T., Yoshizawa K., Tsubura A. Resveratrol induces apoptosis via ROS-triggered autophagy in human colon cancer cells. Int. J. Oncol. 2012; 40, 1020–1028.
21. Sun W., Wang W., Kim J., Keng P., Yang S., Zhang H., Liu C., Okunieff P., Zhang L. Anti-cancer effect of resveratrol is associated with induction of apoptosis via a mitochondrial pathway alignment. Adv. Exp. Med. Biol. 2008; 614, 179–186.
22. Sengottuvelan M., Deeptha K., Nalini N. Resveratrol ameliorates DNA damage, prooxidant and antioxidant imbalance in 1,2-dimethylhydrazine induced rat colon carcinogenesis. Chem. Biol. Interact. 2009; 181, 193–201.
23. Murias M., Jager W., Handler N., Erker T., Horvath Z., Szekeres T., Nohl H., Gille L. Antioxidant, prooxidant and cytotoxic aktivity of hydroxylated resveratrol analogues: structure-activity relationship. Biochem. Pharmacol. 2005; 69, 903–912.
24. Richard T., Pawlus A. D., Iglesias M. I., Pedrot E., Waffo-Teguo P., Merillon J. M., Monti J. P. Neuroprotective properties of resveratrol and derivatives. Ann. N. Y. Acad. Sci. 2011; 1215, 103–108.
25. Yaseen A., Chen S., Hock S., Rosato R., Dent P., Dai Y., Grant S. Resveratrol sensitizes acute myelogenous leukemia cells to histone deacetylase inhibitors through reactive oxygen species-mediated activation of the extrinsic apoptotic pathway. Mol. Phamacol. 2012; 82, 1030–1041.
26. Sinico C., Pirredu R., Pini E., Valenti D., Caddeo C., Fadda A. M., Lai F. Enhancing topíval delivery of ŕesveratrol through nanosizing approach. Planta Medica 2017; 83, 476–481.
27. da Rocha Lindner G., Khalil N. M., Mainardes R. M. Resveratrol-loaded polymeric nanoparticles: validation of an HPLC-PDA method to determine the drug entrapment and evaluation of its antioxidant aktivity. Sci. World J. 2013; 2013, S06083.
28. Venuti V., Cannava C., Cristiano M. C., Fresta M., Majolino D., Paolino D., Stancanelli R., Tommasini S., Ventura C. A. A characterization study od resveratrol/sulfobutyl ether-beta-cyklodextrin inclusion complex and in vitro anticancer activity. Colloids Surf. B Biointerfaces 2014; 115, 22–28.
29. Maeda H., Bharate G. Y., Daruwalla J. Polymeric drugs for efficient tumor- targeted drug delivery based on EPR-effect. Eur. J. Pharm. Biopharm. 2009; 71, 409–419.
30. Allen T. M., Cullis P. R. Liposomal drug delivery systems: from concept to clinical applications. Adv. Drug Deliv. Rev. 2013; 65, 36–48.
31. Coimbra M., Isacchi B., van Bloois L., Torano J. S., Ket A., Wu X., Broere F., Metselaar J. M., Rijcken C. J., Storm G., Bilia R., Schiffelers R. M. Improving solubility and chemical stability of natural compounds for medicinal use by incorporation into liposomes. Int. J. Pharm. 2011; 416, 433–442.
32. Csiszar A., Csiszar A., Pinto J. T., Gautam T., Kleusch C., Hoffmann B., Tucsek Z., Toth P., Sonntag W. E., Ungvari Z. Resveratrol encapsulated in novel fusogenic liposomes activates Nrf2 and attenuates oxidative stress in cerebromicrovascular endothelial cells from aged rats. J. Gerontol. Series A. Biol. Sci. Med. Sci. 2014; 70, 303–313.
33. Catania A., Barrajon-Catalan E., Nicolosi S., Cicirata F., Micol V. Immunoliposome encapsulation increases cytotoxic aktivity and selectivity of curcumin and resveratrol against HER2 overexpressing human breast cancer cells. Breast Cancer Res. Treat. 2013; 141, 55–65.
34. Barrajon-Catalan E., Menendez-Gutierrez M. P., Falco A., Carrato A., Saceda M., Micol V. Selective death of human breast cancer cells by lytic immunoliposomes: correlation with their HER2 expression level. Cancer Lett. 2010; 290, 192–203.
35. Wang X. X., Li Y. B., Yao H. J., Ju R. J., Zhang Y., Li R. J., Yu Y., Zhang L., Lu W. I. The use of mitochondrial targeting resveratrol liposomes modified with a dequalinium polyethylene glycol-distearoylphosphatidyl ethanolamine conjugate to induce apoptosis in resistant lung cancer cells. Biomaterials 2011; 32, 5673–5687.
36. Mohan A., Narayanan S., Sethuraman S., Krishnan U. M. Novel resveratrol and 5-fluorouracil coencapsulated in PEGylated nanoliposomes improve chemotherapeutic efficacy of combination against head and neck squamous cell carcinoma. BioMed. Res. Int. 2014; Artical Numer 424239.
37. Singh G., Pai R. S. Optimized PLGA nanoparticle platform for orally dosed trans-resveratrol with enhanced bioavailability potential. Exp. Opin. Drug Deliv. 2014; 11, 647–659.
38. Sanna V., Siddiqui I. A., Sechi M., Mukhtar H. Resveratrol-loaded nanoparticles based on poly(epsilon-caprolactone) blend for prostate cancer treatment. Mol. Pharm. 2013; 10, 3871–3881.
39. Guo W., Li A., Jia Z., Juan Y., Dai H., Li H. Transferrin modified PEG-PLA-resveratrol conjugates: in vitro and in vivo studies for glioma. Eur. J. Pharmacol. 2013; 718, 41–47.
40. Yin H., Si J., Xu H., Dong J., Zheng D., Lu X., Li X. Resveratrol-loaded nanoparticles reduce oxidative stress induced by radiation or anuloid-beta in transgenic Caenorhabditis elegans. J. Biomed. Nanotechnol. 2014; 10, 1536–1544.
41. Xu W., Ling P., Zhang T. Polymeric micelles, a promising drug delivery system to enhance bioavailability of poorly water-soluble drugs. J. Drug Deliv. 2013; 20, 340315.
42. Kim S., Shi Y., Kim J. Y., Park K., Cheng J. X. Overcoming the barriers in micellar drug delivery: loading efficiency, in vivo stability, and micelle cell interaction. Exp. Opin. Drug Deliv. 2010; 7, 49–62.
43. Ekambaram P., Sathali A., Priyanka K. Solid lipid nanoparticles: a review. Sci. Rev. Chem. Commun. 2012; 2, 80–102.
44. Teskac K., Kristl J. The evidence for solid lipid nanoparticles mediated cell uptake of resveratrol. Int. J. Pharm. 2010; 390, 61–69.
45. Jose S., Anju S. S., Cinu T. A., Aleykutty N. A., Thomas S., Souto E. B. In vivo pharmacokinetics and biodistribution of resveratrol-loaded solid lipid nanoparticles for brain delivery. Int. J. Pharm. 2014; 474, 6–13.
46. Lu Z., Chen R., Fu R., Xiong J., Hu Y. Cytotoxicity and inhibition of lipid peroxidation activity of resveratrol/cyclodextrin inclusion complexes. J. Incl. Phenom. Macrocycl. Chem. 2012; 73, 313–320.
47. Tiwari G., Tiwari R., Rai A. Cyclodextrins in delivery systems: applications. J. Pharm. Bioallied Sci. 2010; 2, 72–79.
Štítky
Farmácia FarmakológiaČlánok vyšiel v časopise
Česká a slovenská farmacie
2017 Číslo 2
Najčítanejšie v tomto čísle
- Cílené podávání léků: potenciální aplikace s resveratrolem
- Mobilní aplikace jako vhodné intervenční nástroje pro nemocné trpící depresí
- Separácia enantiomérov fenylalanínu a metionínu metódou HPLC: porovnanie typov stacionárnych fáz
- Obraz dobrého lekárnika v diele Saladina z Ascola a Valeria Corda