General inhalational anesthetics – pharmacodynamics, pharmacokinetics and chiral properties
Authors:
Ružena Čižmáriková 1; Ladislav Habala 1; Mário Markuliak 1
Authors place of work:
Farmaceutická fakulta UK, Katedra chemickej teórie liečiv, Odbojárov 10, 832 32 Bratislava, SR
1
Published in the journal:
Čes. slov. Farm., 2021; 70, 7-17
Category:
Přehledy a odborná sdělení
doi:
https://doi.org/https://doi.org/10.5817/CSF2021-1-7
Summary
Since the advent of nitric oxide, diethyl ether, chloroform and cyclopropane, the greatest advancement in the area of general inhalational anesthetics has been achieved by the introduction of fluorinated anesthetics and the relevant chiral techniques. This progress led to marked decrease in mortality rates in anesthesia. In the group of chiral fluorinated compounds, halothane (Fluotan®), isoflurane (Foran®), desflurane (Supran®) and enflurane (Ehran®) are deployed as volatile anesthetics. Chiral anesthetics possess a stereogenic center in their molecules and thus exist as two enantiomers (S)-(+) and (R)-(–). Although these chiral anesthetics are used as racemates, it is crucial to study besides the bioactivities of the racemic compounds also the biological activity and other properties of the particular enantiomers.
The present survey discusses the drug category known as inhalational anesthetics in regard to their chiral aspects. These compounds exhibit marked differences between the (R) and (S)-enantiomers in their pharmacodynamics, pharmacokinetics and toxicity. The main analytical technique employed in the enantioseparation of these compounds is gas chromatography (GC). This review lists the individual chiral phases (chiral selectors) used in the enantioseparation as well as in pharmacokinetic studies. The possibilities of preparation of these compounds in their enantiomerically pure form by means of stereoselective synthesis are also mentioned.
Keywords:
general anesthetics – inhalational anesthetics – chirality – stereochemistry – pharmacodynamics – pharmacokinetics – enantioseparation
Zdroje
1. Digger T., Viira D. J. Anaesthesia and surgical pain relief – The ideal general anaesthetic agent. Hospital Pharmacist 2003; 10, 432–440.
2. Celková anestezie – WikiSkripta dostupné na: https://www.wikiskripta.eu/index.php?title=Inhala%C4%8Dn%C3%AD_anestezie&oldid=432710
3. Steihilber D., Schubert-Zsilavecz M., Roth H. J. Medizinische Chemie. Targets und Arzneistoffe. Stuttgart: Deutscher Apotheker Verlag 2005.
4. Franks N. P., Lieb W. R. Volatile general anaesthetics activate a novel neuronal K+ current. Nature 1988; 333, 662–664.
5. Pavel M. A., Petersen E. N., Wang H., Lerner R. A, Hansen S. B. Studies on the mechanism of general anesthesia. PNAS 2020; 117(24), 13757–13766.
6. Petersen E. N., Pavel M. A., Wang H., Hansen S. B. Disruption of palmitate-mediated localization; a shared pathway of force and anesthetic activation of TREK-1 channels. Biochim. Biophys. Acta Biomembr. 2020; 1862(1), 183091.
7. Willenbring D., Xu Y., Tang P. The role of structured water in mediating general anesthetic action on α4β2 nAChR. Phys. Chem. Chem. Phys. 2010; 12(35), 10263–10269.
8. Olsen R. W., Li G. D. GABA(A) receptors as molecular targets of general anesthetics: identification of binding sites provides clues to allosteric modulation. Can. J. Anaesth. 2011; 58(2), 206–215.
9. Weir C. J ., Mitchell S. J., Lambert J. J. Role of GABA(A) receptor subtypes in the behavioural effects of intravenous general anaesthetics. Br. J. Anaesth. 2017; 119(Suppl 1), i167–i175.
10. Zhang Y., Laster M. J., Hara K., Harris R. A., Eger E. I. 2nd, Stabernack C. R., Sonner J. M. Glycine receptors may mediate part of the immobility produced by inhaled anesthetics. Anesth. Analg. 2003; 96, 97–101.
11. Downie D. L., Hall A. C., Lieb W. R., Franks N. P. Effects of inhalational general anaesthetics on native glycine receptors in rat medullary neurones and recombinant glycine receptors in Xenopus oocytes. Br. J. Pharmacol. 1996; 118(3), 493–502.
12. Krasowski M. D., Harrison N. L. The actions of ether, alcohol and alkane general anaesthetics on GABAA and glycine receptors and the effects of TM2 and TM3 mutations. Br. J. Pharmacol. 2000; 129(4), 731–743.
13. Martin D. C., Plagenhoef M., Abraham J., Dennison R. L., Aronstam R. S. Volatile anesthetics and glutamate activation of N-methyl-d-aspartate receptors. Biochem. Pharmacol. 1995; 49, 809–817.
14. Dringenberg H. C. Serotonergic receptor antagonists alter responses to general anaesthetics in rats. Br. J. Anaesth. 2000; 85, 904–906.
15. Crawford J. S., Lewis M. Nitrous oxide in early human pregnancy. Anaesthesia 1986; 41, 900–905.
16. Mazze R. I., Fujinaga M., Rice S. A., Harris S. B., Baden J. M. Reproductive and teratogenic effects of nitrous oxide, halothane, isoflurane, and enflurane in Sprague-Dawley rats. Anesthesiology 1986; 64, 339–344.
17. Málek J., Dvořák A., a kol. Základy anesteziologie [online]. Inhalační anestezie – WikiSkripta dostupné na: https://www.wikiskripta.eu/w/Inhala%C4%8Dn%C3%AD_anestezie
18. Franks N. P., Dickinson R., de Sousa S. L., Hall A. C., Lieb W. R. How does xenon produce anaesthesia (letter). Nature 1998; 396, 324.
19. Lynch C., Baum J., Tenbrinck R., Weiskopf R. B. Xenon anaesthesia. Anesthesiology 2000; 92, 865–870.
20. Cyclopropane. Chemistry World Podcast, dostupné na: https://www.chemistryworld.com/podcasts/cyclopropane/3010701.article
21. MacDonald A. G. A short history of fires and explosions caused by anaesthetic agents. Br. J. Anaesth. 1994; 72, 710–722.
22. Hess L. Dietyléter a chloroform – nejstarší inhalační anestetika se zajímavou historií. Remedia online 2018. Dostupné na: http://www.remedia.cz/Archiv-rocniku/Rocnik-2018/5-2018/Dietyleter-a-chloroform-nejstarsi-inhalacni-anestetika-se-zajimavou-historii/e-2u8-2D9-2Dv.magarticle.aspx
23. Chang C. Y., Goldstein E., Agarwal N., Swan K. G. Ether in the developing world: rethinking an abandoned agent. BMC Anesthesiology 2015; 15, 149.
24. Hartl J., Palát K., Doležal M., Miletín M., Opletalová V. Farmaceutická chemie II. Univerzita Karlova Praha 1994; 9–10.
25. Huang L., Sang C. N., Desai M. S. Beyond ether and chloroform – a major breakthrough with halothane. J. Anesth. Hist. 2017; 3(3), 87–102.
26. Cahn R. S., Ingold C. K., Prelog V. Specification of molecular chirality. Angew. Chem. Int. Ed. Engl. 1965; 4, 385–415.
27. Prelog V. , Helmchen G. Basic principles of the CIP-system and proposals for a revision. Angew. Chem. Int. Ed. Engl. 1982; 21(8), 567–585.
28. Sedensky M. M., Cascorbi H. F., Meinwald J., Radford P., Morgan P. G. Genetic differences affecting the potency of stereoisomers of halothane. Proc. Nat. Acad. Sci. 1994; 91(21), 10054–10058.
29. Martin J. L., Meinwald J., Radford P., Liu Z., Graf M. L., Pohl L. R. Stereoselective metabolism of halothane enantiomers to trifluoroacetylated liver proteins. Drug Metab. Rev. 1995; 27(1–2), 179–189.
30. Mather L. E., Fryirs B. L., Duke C. C., Cousins M. J. Lack of whole body pharmacokinetic differences of halothane enantiomers in the rat. Anesthesiology 2000; 92, 192–196.
31. Bradshaw J. J., Ivanetich K. M. Isoflurane: a comparison of its metabolism by human and rat hepatic cytochrome P-450. Anesth. Analg. 1984; 63, 805–813.
32. Kharasch E. D., Hankins D. C., Cox K. Clinical isoflurane metabolism by cytochrome P450 2E1. Anesthesiology 1999; 90, 766–771.
33. Karpinskii T. M., Szulc R., Szyfter K. Role of cytochrome P450 in metabolism of inhalation anaesthetics. Noviny lekarskie 2006; 3, 292–298.
34. Lysko G. S., Robinson J. L., Casto R., Ferrone R. A. The stereospecific effects of isoflurane isomers in vivo. Eur. J. Pharmacol. 1994; 263(1–2), 25–29.
35. Franks N. P., Lieb W. R. Stereospecific effects of inhalational general anesthetic optical isomers on nerve ion channels. Science 1991; 254(5030), 427–430.
36. Dickinson R., Franks N. P., Lieb W. R. Can the stereoselective effects of the anesthetic isoflurane be accounted for by lipid solubility? Biophys. J. 1994; 66(6), 2019–2023.
37. Moody E. J ., Harris B. D., Skolnick P. Stereospecific actions of the inhalation anesthetic isoflurane at the GABAA receptor complex. Brain Res. 1993; 615, 101–106.
38. Hall A. C., Lieb W. R., Franks N. P. Stereoselective and non-stereoselective actions of isoflurane on the GABAA receptor. Br. J. Pharmacol. 1994; 112, 906–910.
39. Quinlan J. J., Firestone S., Firestone L. L. Isoflurane’s enhancement of chloride flux through rat brain gammaaminobutyric acid type A receptors is stereoselective. Anesthesiology 1995; 83, 611–615.
40. Oz M., Tchugunova Y., Dinc M., Dunn S. M. Effects of isoflurane on voltage-dependent calcium fluxes in rabbit T-tubule membranes: comparison with alcohols. Arch. Biochem. Biophys. 2002; 398(2), 275–283.
41. Xu Y., Tang P., Firestone L., Zhang T. T. 19F nuclear magnetic resonance investigation of stereoselective binding of isoflurane to bovine serum albumin. Biophys. J. 1996; 70(1), 532–538.
42. Harris B., Moody E., Skolnick P. Isoflurane anesthesia is stereoselective. Eur. J. Pharmacol. 1992; 217, 215–216.
43. Eger E. I., Koblin D. D., Laster M. J., Schurig V., Juza M., Ionescu P., Gong D. Minimum alveolar anesthetic concentration values for the enantiomers of isoflurane differ minimally. Anesth. Analg. 1997; 85, 188–192.
44. Krasowski M. D., Harrison N. L. The actions of ether, alcohol and alkane general anaesthetics on GABAA and glycine receptors and the effects of TM2 and TM3 mutations. Br. J. Pharmacol. 2000;129(4), 731–743.
45. Garton K. J., Yuen P., Meinwald J., Thummel K. E., Kharasch E. D. Stereoselective metabolism of enflurane by human liver cytochrome P450 2E1. Drug Metab. Dispos. 1995; 23, 1426–1430.
46. Patel S. S., Goa K. L. Desflurane. A review of its pharmacodynamic and pharmacokinetic properties and its efficacy in general anaesthesia. Drugs 1995; 50(4), 742–767.
47. Jakobsson J. Desflurane: a clinical update of a third-generation inhaled anaesthetic. Acta Anaesthesiol. Scand. 2012; 56(4), 420–432.
48. Saros G. B., Doolke A., Anderson R. E., Jakobsson J. G. Desflurane vs. sevoflurane as the main inhaled anaesthetic for spontaneous breathing via a laryngeal mask for varicose vein day surgery: A prospective randomized study. Acta Anaesthesiol. Scand. 2006; 50, 549–552.
49. Gupta P., Rath G. P., Prabhakar H., Bithal P. K. Comparison between sevoflurane and desflurane on emergence and recovery characteristics of children undergoing surgery for spinal dysraphism. Indian J. Anaesth. 2015; 59, 482–487.
50. Dayan A. D. Analgesic use of inhaled methoxyflurane: Evaluation of its potential nephrotoxicity. Hum. Exp. Toxicol. 2016; 35(1), 91–100.
51. Blair H. A., Frampton J. E. Methoxyflurane: A review in trauma pain. Clin. Drug Investig. 2016; 36(12), 1067–1073.
52. Sakai E. M., Connolly L. A., Klauck J. A. Inhalation anesthesiology and volatile liquid anesthetics: focus on isoflurane, desflurane, and sevoflurane. Pharmacotherapy 2005; 25(12), 1773–1788.
53. Patel S. S., Goa K. L. Sevoflurane. A review of its pharmacodynamic and pharmacokinetic properties and its clinical use in general anaesthesia. Drugs 1996; 51, 658–700.
54. Ferrando C., Aguilar G., Piqueras L., Soro M., Moreno J., Belda F. J. Sevoflurane, but not propofol, reduces the lung inflammatory response and improves oxygenation in an acute respiratory distress syndrome model. Eur. J. Anaesthesiol. 2013; 30, 455–463.
55. Liu X., Liu X., Xu Y., Xu Z., Huang Y., Chen S., Li S., Liu D. Ventilatory ratio in hypercapnic mechanically ventilated patients with COVID-19 associated ARDS. Am. J. Respir. Crit. Care Med. 2020; 201(10), 1297–1299.
56. Wilson I. D., Poole C. F. Handbook of Methods and Instrumentation in Separation Science, Volume 1. London: Elsevier 2009; 159–130.
57. Špánik I., Krupčík J. Využitie cyklodextrínov ako stacionárnych fáz na separáciu enantiomérov kapilárnou plynovou chromatografiou. Chem. Listy 2000; 94, 10–14.
58. Schurig V. Use of derivatized cyclodextrins as chiral selectors for the separation of enantiomers by gas chromatography. Ann. Pharm. Fr. 2010; 68, 82–98.
59. Meinwald J., Thomson W. P., Pearson D. L., Konig W. A., Runge T., Francke W. Inhalation anesthetics stereochemistry. Optical resolution of halothane, enflurane, and isoflurane. Science 1991; 251, 560–561.
60. König W. A., Krebber R., Mischnick P. Cyclodextrins as chiral stationary phase in capillary gas chromatography for chromatography, part V: Octakis (3-O-butyryl-2,6--di-O-pentyl)-γ-cyklodextrin. J. High. Res. Chromatogr. 1989; 12, 732–738.
61. Ramig K., Krishnaswami A., Rozov L. A. Chiral interaction of the fluoroether anesthetics desflurane, isoflurane, enflurane, and analogues with modified cyklodextrins studied by capillary gas chromatography and nuclear magnetic resonance spectroscopy, a simple method for column-suitability screening. Tetrahedron 1996; 52, 319–330.
62. Schurig V., Grosenick H., Juza M. Enantiomer separation of chiral inhalation anesthetics (enflurane, isoflurane and desflurane) by gas chromatography on a gama-cyclodextrin derivative. Recl. Trav. Chim. Pays-Bas 1995; 114, 211–219.
63. Schurig V., Juza M. Approach to the thermodynamics of enantiomer separation by gas chromatography. Enantioselectivity between the chiral inhalation anesthetics enflurane, isoflurane and desflurane and a diluted gamma-cyclodextrin derivative. J. Chromatogr. A 1997; 757(1–2), 119–135.
64. Schmidt R., Wahl H. G., Häberle H., Dieterich H. J., Schurig V. Headspace gas chromatography-mass spectrometry analysis of isoflurane enantiomers in blood samples after anesthesia with the racemic mixture. Chirality 1999; 11, 206–211.
65. Juza M., Jakubetz H., Hettesheimer H., Schurig V. Quantitative determination of isoflurane enantiomers in blood samples during and after surgery via headspace gas chromatography-mass spectrometry. J. Chromatogr. B Biomed. Sci. Appl. 1999; 735(1), 93–102.
66. Haeberle H. A., Wahl H. G., Jakubetz H., Krause H., Schmidt R., Schurig V., Dieterich H. J. Accumulation of S(+)-enantiomer in human beings after general anaesthesia with isoflurane racemate. Eur. J. Anaesthesiol. 2002; 19, 641–646.
67. Wang F., Polavarapu P. L., Schurig V., Schmidt R. Absolute configuration and conformational analysis of a degradation product of inhalation anaesthetic sevoflurane: A vibrational circular dichroism study. Chirality 2002; 14, 618–624.
68. Haeberle H. A., Wahl H. G., Aigner G., Unertl K., Dieterich H. J. Release of S(+) enantiomers in breath samples after anaesthesia with isoflurane racemate. Eur. J. Anaesthesiol. 2004; 21, 144–150.
69. Bodenhöfer K., Hierlemann A., Juza M., Schurig V., Göpel W. Chiral discrimination of inhalation anesthetics and methyl propionates by thickness shear mode resonators: new insights into the mechanisms of enantioselectivity by cyclodextrins. Anal. Chem. 1997; 69, 4017–4031.
70. Bodenhöfer K., Hierlemann A., Göpel W., Juza M., Gross B., Schurig V. Efficient gas sensor mediated enantiomer discrimination of 2-substituted methyl propionates and chiral inhalation anesthetics on a modified cyclodextrin. Chim. Oggi 1998; 16, 56–58.
71. Hierlemann A., Bodenhöfer K., Juza M., Gross B., Schurig V., Göpel W. Enantioselective monitoring of chiral inhalation anesthetics by simple gas sensors. Sens. Mater. 1999; 11, 209–218.
72. Polavarapu P. L., Cholli A. L., Vernice G. G. Determination of absolute configurations and predominant conformations of general inhalation anesthetics: desflurane. J. Pharm. Sci. 1993; 82(8), 791–793.
73. Schurig V. Salient features of enantioselective gas chromatography: the enantiomeric enflurane, isoflurane and desflurane by gas chromatography on a derivatized gamma-cyclodextrin stationary phase. J. Chromatogr. A 1997; 769(1), 119–127.
74. Schurig V., Juza M., Green B. S., Horakh J., Simon A. Absolute configuration of the inhalation anaesthetics isoflurane and desflurane. Angew. Chem. 1996; 35, 1680–1682.
75. Polavarapu P. l., Zhao C. X., Cholli A. L., Vernice G. G. Vibration circular dichroism absolute configuration, and predominant conformation of volatile anesthetics: deflurane. J. Phys. Chem. 1999; 103, 6127–6132.
76. Polavarapu P. l., Cholli A. L., Vernice G. G. Determination of absolute configuration and predominant conformations of general inhalation anesthetics: deflurane. J. Pharm. Sci. 1997; 86, 267.
77. Biedermann P. U., Cheeseman J. R., Frisch M. J., Schurig V., Gutman I., Agranat I. Conformational spaces and absolute configuration of chiral fluorinated inhalation anaesthetics. A theoretical study. J. Org. Chem. 1999; 64, 3878–3884.
78. Ramig K. Synthesis and reactions of fluoroether anesthetics. Synthesis 2002; (17), 2627–2631.
79. Swarts J. E. Étude sur le fluochloroforme. Acad. Roy. Belg. 1892; 3(24), 474–484.
80. Rozov L. A., Lessor R. A., Kudzma L. V., Ramig K. The fluoromethyl ether sevoflurane as a fluoride source in halogen-exchange reactions. J. Fluorine Chem. 1998; 88, 51–54.
81. Ramig K., Englander M., Kallashi F., Livchits L., Zhou J. Synthesis of esters by selective methanolysis of the trifluoromethyl group. Tetrahedron Lett. 2002; 43, 7731–7734.
82. Kimura Y., Matsuura D. Novel Synthetic Method for the Vilsmeier-Haack Reagent and Green Routes to Acid Chlorides, Alkyl Formates, and Alkyl Chlorides. Int. J. Org. Chem. 2013; 03(03), 1–7.
83. Ramig K., Lavida O., Szalda D. J. The highly stereoselective decarboxylation of (+)-bromo-1-chloro-2,2,2-trifluoropropanoic acid to give 1-bromo-1-chloro-2,2,2-trifluoroethane[(+)-halothane] with retention of configuration. Tetrahedron Asymmetry 2012; 23, 201–204.
84. Rozov L. A., Patrice W., Rafalko P.W., Evans S. M., Brockunier L., Ramig K. Asymmetric synthesis of the volatile anesthetic 1,2,2,2-tetrafluoroethyl chlorofluoromethyl ether using a stereospecific decarboxylation of unusual stereochemical outcome. J. Org. Chem. 1995; 60, 1319–1325.
85. Rozov L. A., Huang Ch. G., Halpern D. F.,Vernice G. G., Ramig K. Enantioselective synthesis of the volatile anesthetic desflurane. Tetrahedron Asymm. 1997; 8(18), 3023–3025.
Štítky
Farmácia FarmakológiaČlánok vyšiel v časopise
Česká a slovenská farmacie
2021 Číslo 1
Najčítanejšie v tomto čísle
- Celkové inhalačné anestetiká – farmakodynamika, farmakokinetika a chirálne vlastnosti
- Triazavirín by mohol byť novovu nádejou v súboji s koronavírusom 2 vyvolávajúcim ťažký akútny respiračný syndróm (SARS-CoV-2)
- K vývoji složení lékárniček první pomoci
- Vliv způsobu emulgace, rychlosti míchání a objemu na PLGA mikročástice s ibuprofenem