#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

APPLICATION OF TRIBOLOGICAL METHODS FOR PREDICTION OF WEAR OF DENTAL FILLING MATERIALS


Authors: P. Svoboda 1,2;  P. Šikula 1;  M. Vrbka 3;  D. Nečas 3;  L. Roubalíková 1
Authors place of work: Stomatologická klinika Lékařské fakulty Masarykovy univerzity a Fakultní nemocnice u sv. Anny, Brno 1;  Medisyn, s. r. o., Brno 2;  Odbor tribologie, Ústav konstruování FSI VUT, Brno 3
Published in the journal: Česká stomatologie / Praktické zubní lékařství, ročník 121, 2021, 4, s. 108-115
Category: Původní práce

Summary

Introduction and aim: Tribological methods are widely used not only in the field of technical sciences, but increasingly also in the field of human and veterinary medicine. Monitoring the wear of biological and prosthetic materials is now a common part of test protocols for joint replacements. From this point of view, the use of tribology in dentistry is a logical step in the development and stress monitoring of a number of materials used in restorative and prosthetic dentistry, but also in the field of dental hygiene in cleaning, including depuration techniques.

Results: The creation of appropriate conditions for the simulation of contact in an environment that is as close as possible to the real conditions in the oral cavity seems to be crucial. In addition to stress-stain optimization, a subsequent evaluation by a suitable defectoscopic method is desirable to complement the issue of tribology.

Conclusion: This comprehensive approach makes it possible to obtain valuable information on the properties of the new material through its development and, if necessary, to modify it.

Keywords:

permanent filling material – physical and mechanical properties – tribology – wear – friction – topography of rubbing surfaces


Zdroje

1. Goetz K, Campbell MD, Broge B, Brodowski M, Wensing M, Szecsenyi J. Effectiveness of a quality management program in dental care practices. BMC Oral Health. 2014; 41(14). [cit. 22. 12. 2020]. Dostupné z: https://doi.org/10.1186/1472-6831-14-41

2. ISO – International Organization for Standardization. ISO/TC 106, Technical Commities – Dentistry. Ženeva: International Organization for Standardization; 1962. [cit. 22. 12. 2020]. Dostupné z https://www.iso.org/committee/51218.html

3. Jones DW. International dental standards. Brit Dental J. 2007; 203(6): 361–369. [cit. 22. 12. 2020]. Dostupné z: https://doi.org/10.1038/bdj.2007.837

4. Wojda S, Szoka B, Sajewicz E. Tribological charakteristics of enamel–dental material contacts investigated in vitro. Acta Bioeng Biomech. 2015; 17(1): 21–29. [cit. 23. 12. 2020]. Dostupné z: http://www.actabio.pwr.wroc.pl/Vol17No1/3.pdf

5. Azevedo AM, Miranda A, Panzeri H, do Prado CJ, De-Mello JDB, Soares CJ, et al. Assessment in vitro of brushing on dental surface roughness alteration by laser interferometry. Braz Oral Res. 2008; 22(1): 11–17. [cit. 23. 12. 2020]. Dostupné z: https://doi.org/10.1590/S1806-83242008000100003

6. ISO – International Organization for Standardization. ISO/TR 14569-1:2007, Dental materials – Guidance on testing of wear, Ženeva: International Organization for Standardization; 2007. [cit. 23. 12. 2020]. Dostupné z: https://www.iso.org/standard/45741.html

7. Sajewicz E. A comparative study of tribological behaviour of dental composites and tooth enamel: an energy approach. J Eng Tribol. 2010; 224(6): 559–568. [cit. 23. 12. 2020]. Dostupné z: https://doi.org/10.1243/13506501JET685

8. Holík P, Morozova Y. Opotřebení tvrdých zubních tkání a metody jeho hodnocení. Čes stomatol Prakt zubní lék. 2018; 118(4): 43–49. [cit. 23. 12. 2020]. Dostupné z: https://cspzl.dent.cz/artkey/sto-201804-0006_wear-of-hard-dental-tissues-and-methods-of-its-evaluation.php

9. Heintze S, Siegward D. How to qualify and validate wear simulation devices and methods. Dent Mater. 2006; 22(8): 712–734. [cit. 23. 12. 2020]. Dostupné z: https://doi.org/10.1016/j.dental.2006.02.002

10. Prestigious 2010 Zwick Science Award [online]. 2011. [cit. 2. 1. 2021]. Dostupné z: https://www.bristol.ac.uk/dental/news/2011/54.html

11. Villat C, Ponthiaux P, Pradelle-Plasse N,Grosgogeat B, Colon P. Initial sliding wear kinetics of two types of glass ionomer cement: A tribological study. BioMed Res Inter. 2014; 2014: 790572. [cit. 5. 1. 2021]. Dostupné z:

https://doi.org/10.1155/2014/790572

12. Carvalho A, Pinto AP, Madeira S, Silva FS, Carvalho O, Gomes JR. Tribological characterization of dental restorative materials. Biotribology. 2020; 23(1): 10–19. [cit. 5. 1. 2021]. Dostupné z: https://doi.org/10.1016/j.biotri.2020.100140

13. Ruggiero A, D’Amato R, Sbordone L, Haro FB, Lanza A. Experimental comparison on dental biotribological pairs zirconia/zirconia and zirconia/natural tooth by using a reciprocating tribometer. J Med Syst. [online]. 2019; 43(4). [cit. 6. 9. 2020]. Dostupné z: https://doi.org/10.1007/s10916-019-1230-8

14. Lauvahutanon S, Takahashi H, Oki M, Arksornnukit M, Kanehira M, Finger WJ. In vitro evaluation of the wear resistance of composite resin blocks for CAD/CAM. Dent Mater J. [online]. 2015; 34(4), 495–502. [cit. 6. 9. 2020]. Dostupné z: https://doi.org/10.4012/dmj.2014-293

15. Vale AP, Ramalho A. Study of abrasive resistance of composites for dental restoration by ball-cratering. Wear. 2003; 255(7–12): 990–998. [cit. 6. 9. 2020]. Dostupné z: https://doi.org/10.1016/S0043-1648(03)00150-9

16. Sampaio M, Buciumeanu M, Henriques B, Silvia F, Souza J, Gomes JR. Comparison between PEEK and Ti6Al4V concerning micro-scale abrasion wear on dental applications. J Mech Behav Biomed Mater. 2016; 2016(60): 212–219. [cit. 6. 9. 2020]. Dostupné z: https://dx.doi.org/10.1016/j.jmbbm.2015.12.038

17. Scherge M, Sarembe S, Klesow A, Petzold M. Dental tribology at the microscale. Wear. 2013; 297(1–2): 1040–1044.[cit. 19. 9. 2020]. Dostupné z: https://doi.org/10.3390/lubricants7060052

18. Suwannaroop PP, Chaijareenont NK, Takahashi H, Arksornnukit M. In vitro wear resistance, hardness and elastic modulus of artificial denture teeth. Dent Mater J. 2011; 30(4): 461–468.

19. Sajewicz E, Kulesza Z. A new tribometer for friction and wear studies of dental materials and hard tooth tissues. Tribol Int. 2007; 40(5): 885–895.

20. Amtunes P, Ramalho VA. Influence of pH values and aging time on the tribological behaviour of posterior restorative materials. Wear. 2009; 267(5–8): 718–725. [cit. 31. 12. 2020]. Dostupné z: https://doi.org/10.1016/j.wear.2008.12.054

21. Tingting WU, Gan X, Zhu Z, Yu H. Aging effect of pH on the mechanical and tribological properties of dental composite resins. Particulate Sci Technol. [online]. 2016; 36(3): 378–385. [cit. 31. 12. 2020]. Dostupné z:https://doi.org/10.1080/02726351.2016.1262484

22. Mckinney JE, Wu W. Influence of chemicals on wear of dental composites. J Dent Res. 1982; 61(10): 1180–1183.

23. Sripetchdanond J, Leevailoj C. Wear of human enamel opposing monolithic zirconia, glass ceramic, and composite resin: An in vitro study. J Prosthet Dent. 2014; 112(5): 1141–1150. [cit. 31. 12. 2020]. Dostupné z: https://doi.org/10.1016/j.prosdent.2014.05.006

24. Mayworm CD, Camargo SS, Bastian FL. Influence of artificial saliva on abrasive wear and microhardness of dental composites filled with nanoparticles. J Dent. 2008; 36(9): 703–710. [cit. 1. 1. 2021]. Dostupné z: https://doi.org/10.1016/j.jdent.2008.05.001

25. Bai Y, Zhao J, Si W, Wang X. Two-body wear performance of dental colored zirconia after different surface treatments. J Prosthet Dent. 2016; 116(4): 584–590. [cit. 2. 1. 2021]. Dostupné z: https://doi.org/10.1016/j.prosdent.2016.02.006

26. Condon JR, Ferracane JL. Evaluation of composite wear with a new multi-mode oral wear simulator. Dent Mater. 1996; 12(4): 218–226. [cit. 2. 1. 2021]. Dostupné z: https://doi.org/10.1016/s0109-5641(96)80026-1

27. Yesil ZD, Alapati S, Johnston W, Seghi RR. Evaluation of the wear resistance of new nanocomposite resin restorative materials. J Prosthet Dent. 2008; 99(6): 435-443. [cit. 2. 1. 2021]. Dostupné z: https://doi.org/10.1016/S0022-3913(08)60105-5

28. Clelland N, Pagnotto M, Kerby RE, Seghi RR. Relative wear of flowable and highly filled composite. J Prosthet Dent. 2005; 93(2): 153–157. [cit. 2. 1. 2021]. Dostupné z: https://doi.org/10.1016/j.prosdent.2004.11.006

29. Lim B, Ferracane JL, Condon J, Adey JD. Effect of filler fraction and filler surface treatment on wear of microfilled composites. Dent Mater. 2002; 18(1): 1–11. [cit. 2. 1. 2021]. Dostupné z: https://doi.org/10.1016/S0109-5641(00)00103-2

30. Bizhang M, Schmidt I, Chun YP, Arnold WH, Zimmer S. Toothbrush abrasivity in a long-term simulation on human dentin depends on brushing mode and bristle arrangement. PloS one. 2017; 12(2): e0172060. [cit. 3. 1. 2021]. Dostupné z: https://doi.org/10.1371/journal.pone.0172060

Štítky
Chirurgia maxilofaciálna Ortodoncia Stomatológia
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#