The possibilities of zoonotic transmission of rotaviruses
Authors:
R. Moutelíková; J. Prodělalová
Authors place of work:
Výzkumný ústav veterinárního lékařství, oddělení virologie, Brno
Published in the journal:
Epidemiol. Mikrobiol. Imunol. 64, 2015, č. 2, s. 66-71
Category:
Souhrnné sdělení
Summary
Rotaviruses are significant enteric pathogens of humans and animals. Rotavirus-associated mortality is still high in children, especially in developing countries. Rotaviruses also account for important economic losses due to gastrointestinal disease of livestock animals, notably of young cattle and pigs. Increasing numbers of different rotavirus strains stress the necessity of their uniform nomenclature and detailed classification with the use of whole-genome sequencing. Phylogenetic analyses of the rotavirus genome reveal repeated intersections between the evolution of human and animal rotavirus strains which is probably a consequence of multiple events of transmission among various animal species. The interspecies transmission and subsequent gene reassortment are important mechanisms driving the diversity of rotaviruses and enabling the emergence of new pathogenic strains.
Keywords:
rotavirus – gastroenteritis – zoonotic transmission – gene reassortment
Zdroje
1. Ahmed MU, Kobayashi N, Wakuda M, et al. Genetic analysis of group B human rotaviruses detected in Bangladesh in 2000 and 2001. J Med Virol, 2004;72:149–155.
2. Agócs MM, Serhan F, Yen C, et al. WHO global rotavirus surveillance network: a strategic review of the first 5 years, 2008–2012. Morb Mortal Wkly Rep, 2014;63(29):634–637.
3. Attoui H, Mertens PPC, Becnel J, et al. Reoviridae. In King AMQ, Adams MJ, Carstens EB, Lefkowitz EJ. Virus Taxonomy: Classification and Nomenclature of Viruses: Ninth Report of the International Committee on Taxonomy of Viruses. Amsterdam: Elsevier Academic Press;2012;541–637.
4. Aung TS, Kobayashi N, Nagashima S, et al. Detection of group B rotavirus in an adult with acute gastroenteritis in Yangon, Myanmar. J Med Virol, 2009;81:1968–1974.
5. Azavedo MS, Yuan L, Jeong KI, et al. Viremia and nasal and rectal shedding of rotavirus in gnotobiotic pigs inoculated with Wa human rotavirus. J Virol, 2005;79:5428–5436.
6. Bailey KE, Gilkerson JR, Browning GF. Equine rotaviruses – Current understanding and continuing challenges. Vet Microbiol, 2013;167(1-2):135–144.
7. Bányai K, Bogdán Á, Domonkos G, et al. Genetic diversity and zoonotic potential of human rotavirus strains, 2003-2006, Hungary. J Med Virol, 2009;81:362–370.
8. Bányai K, Jiang B, Bogdán Á, et al. Prevalence and molecular characterization of human group C rotaviruses in Hungary. J Clin Virol, 2006;37:317–322.
9. Bishop RF, Davidson GP, Holmes IH, Ruck BJ. Virus particles in epithelial cells of duodenal mucosa from children with acute non-bacterial gastroenteritis. Lancet, 1973;2(7841):1281–1283.
10. Blanchard PC. Diagnostics of dairy and beef cattle diarrhea. Vet Clin Food Anim, 2012;28(3):443–464.
11. Doan YH, Nakagomi T, Aboudy Y, et al. Identification by full-genome analysis of a bovine rotavirus transmitted directly to and causing diarrhea in a human child. J Clin Microbiol, 2013;51:182–189.
12. Doležel J, Pazdiora P. Kolik v ČR stojí hospitalizace pro rotavirové gastroenteritidy [online]. Medical Tribune CZ 26/2013 [cit. 2015-01-16]. Dostupný na www: <http://www.tribune.cz/clanek/31812>.
13. Esona MD, Humphrey CD, Dennehy PH, et al. Prevalence of group C rotavirus among children in Rhode Island, United States. J Clin Microbiol, 2008;42:221–224.
14. Estes MK. Rotaviruses and their replication. In: Knipe DM, Howley PM, Griffin DE, et al. Fields Virology. 4th ed. Philadelphia: Lipincott William and Wilkins;2001; 1747–1785.
15. Gabbay YB, Borges AA, Oliveira DS, et al. Evidence for zoonotic transmission of group C rotaviruses among children in Belém, Brazil. J Med Virol, 2008;80:1666–1674.
16. Ghosh S, Kobayashi N. Whole-genomic analysis of rotavirus strains: current status and future prospects. Future Microbiol, 2011;6(9):1049–1065.
17. Ghosh S, Urushibara N, Taniguchi K, Kobayashi N. Whole genomic analysis reveals the porcine origin of human G9P[19] rotavirus strains Mc323 and Mc345. Infect Genet Evol, 2012;12:471–477.
18. Ghosh S, Varghese V, Samajdar S, et al. Molecular characterization of a porcine Group A rotavirus strain with G12 genotype specificity. Arch Virol, 2006;151:1329–1344.
19. Hoshino Y, Honma S, Jones RW, et al. A porcine G9 rotavirus strain shares neutralization and VP7 phylogenetic sequence lineage 3 characteristics with contemporary human G9 rotavirus strains. Virology, 2005;332:177–188.
20. Iturriza-Gómara M, Clarke I, Desselberger U, et al. Seroepidemiology of group C rotavirus infection in England and Wales. Eur J Epidemiol, 2004;19:589–595.
21. Iturriza-Gómara M, Dallman K, Bányai K, et al. Rotavirus genotypes co-circulating in Europe between 2006 and 2009 as determined by EuroRotaNet, a pan-European collaborative strain surveillance network. Epidemiol Infect, 2011;139(6):895–909.
22. Kobayashi N, Alam MM, Kojima K, et al. Genomic diversity and evolution of rotaviruses: an overview. In: Genomic Diversity and Molecular Epidemiology of Rotaviruses. Kobayashi N (ed). Research Signpost, Trivandrum, India;2003; 75–89.
23. Martella V, Bányai K, Lorusso E, et al. Genetic heterogeneity in the VP7 of group C rotaviruses. Virology, 2007;367:358–366.
24. Marthaler D, Rossow K, Culhane M, et al. Identification, phylogenetic analysis and classification of porcine group C rotavirus VP7 sequences from the United States and Canada. Virology, 2013;446:189–198.
25. Marthaler D, Rossow K, Gramer M, et al. Detection of substantial porcine group B rotavirus genetic diversity in the United States, resulting in a modified classification proposal for G genotypes. Virology, 2012;433:85–96.
26. Matthijnssens J, Ciarlet M, Rahman M, et al. Recommendations for the classification of group A rotaviruses using all 11 genomic RNA segments. Arch Virol, 2008;153:1621–1629.
27. Matthijnssens J, Otto PH, Ciarlet M, et al. VP6-sequence-based cutoff values as a criterion for rotavirus species demarcation. Arch Virol, 2012;157:1177–1182.
28. Meleg E, Bányai K, Martella V, et al. Detection and quantification of group C rotaviruses in communal sewage. Appl Environ Microbiol, 2008;74:3394–339.
29. Midgley SE, Bányai K, Buesa J, et al. Diversity and zoonotic potential of rotaviruses in swine and cattle across Europe. Vet Microbiol, 2012;156:238–245.
30. Midgley S, Böttiger B, Jensen TG, et al. Human group A rotavirus infections in children in Denmark; detection of reassortant G9 strains and zoonotic P[14] strains. Infect Genet Evol, 2014;27:114–120.
31. Moutelíková R, Prodělalová J, Dufková L. Prevalence study and phylogenetic analysis of group C porcine rotavirus in the Czech Republic revealed a high level of VP6 gene heterogeneity within porcine cluster I1. Arch Virol, 2014;159(5):1163–1167.
32. Moutelíková R, Bendová J, Prodělalová J. Detection of group B and C porcine rotaviruses in the Czech Republic. Veterinářství, 2012;2:87–89.
33. Mukherjee A, Ghosh S, Bagchi P, et al. Full genomic analyses of human rotavirus G4P[4], G4P[6], G9P[19] and G10P[6] strains from North-Eastern India: evidence for interspecies transmission and complex reassortment events. Clin Microbiol Infect, 2011;17:1343–1346.
34. Mukherjee A, Mullick S, Deb AK, et al. First report of human rotavirus G8P[4] gastroenteritis in India: evidence of ruminants-to-human zoonotic transmission. J Med Virol, 2013;85(3):537–545.
35. Nagashima S, Kobayashi N, Ishino M, et al. Whole genomic characterization of a human rotavirus strain B219 belonging to a novel group of the genus Rotavirus. J Med Virol, 2008;80:2023–2033.
36. Nilsson M, Svenungsson B, Hedlund K-O, et al. Incidence and genetic diversity of group C rotavirus among adults. J Infect Dis, 2000;182:678–684.
37. Ng TFF, Mesquita JR, Nascimento MSJ, et al. Feline fecal virome reveals novel and prevalent enteric viruses. Vet Microbiol, 2014;171:102–111.
38. Otto PH, Ahmed MU, Hotzel H, et al. Detection of avian rotaviruses of groups A, D, F and G in diseased chickens and turkeys from Europe and Bangladesh. Vet Microbiol, 2012;156:8–15.
39. Parashar UD, Hummelman EG, Bresee JS, et al. Global illness and deaths caused by rotavirus disease in children. Emerg Infect Dis, 2003;9:565–72.
40. Pazdiora P. Current rotavirus infections, options of prevention through vaccination. Postgraduální medicína, 2011;9:964–967.
41. Pazdiora P, Beneš Č. Rotavirus gastroenteritis in the Czech Republic before the start of vaccination. Epidemiol Mikrobiol Imunol, 2013;4:131–137.
42. Phan TG, Nishimura S, Okame M, et al. Virus diversity and an outbreak of group C rotavirus among infants and children with diarrhea in Maizuro City, Japan, during 2002-2003. J Med Virol, 2004;74:173–179.
43. Rahman M, Matthijnssens J, Goegebuer T, et al. Predominance of rotavirus G9 genotype in children hospitalized for rotavirus gastroenteritis in Belgium during 1999-2003. J Clin Virol, 2005;33:1–6.
44. Rodger SM, Bishop RF, Holmes IH. Detection of a rotavirus-like agent associated with diarrhea in an infant. J Clin Microbiol, 1982;16:724–726.
45. Saif LJ, Bohl EH, Theil KW, et al. Rotavirus-like, calicivirus-like, and 23-nm virus-like particles associated with diarrhea in young pigs. J Clin Microbiol, 1980;12:105–111.
46. Saif LJ, Jiang B. Nongroup A rotaviruses of humans and animals. Curr Top Microbiol Immunol, 1994;185:339–371.
47. Sánchez-Fauquier A, Roman E, Colomina J et al. First detection of group C rotavirus in children with acute diarrhea in Spain. Arch Virol, 2003;148:399–404.
48. Silva LC, Sanches AA, Gregori F, et al. First description of group A rotavirus from fecal samples of ostriches (Struthio camelus). Res Vet Sci, 2012;93:1066–1069.
49. Vesikari T. Trials of oral bovine and rhesus rotavirus vaccines in Finland: a historical account and present status. Arch Virol, 1996;12:177–186.
50. Wang Y-H, Kobayashi N, Nagashima S, et al. Full genomic analysis of a porcine-bovine reassortant G4P[6] rotavirus strain R479 isolated from an infant in China. J Med Virol, 2010;82:1094–1102.
51. Yang H, Makeyev EV, Kang Z, et al. Cloning and sequence analysis of dsRNA segments 5, 6 and 7 of a novel non-group A, B, C adult rotavirus that caused an outbreak of gastroenteritis in China. Virus Res, 2004;106:15–26.
52. Yuan L, Stevenson GW, Saif LJ. Rotavirus and reovirus. In: Straw BE, Zimerman JJ, D´Alaire S, Taylor DJ. Diseases of Swine. 9th ed. Ames, IA: Blackwell Publishing; 2006: 435–454.
53. Zeller M, Heylen E, De Coster S, et al. Full genome characterization of a porcine-like human G9P[6] rotavirus strain isolated from an infant in Belgium. Infect Genet Evol, 2012;12:1492–1500.
54. Zhang Q, Hu R, Tang X, et al. Occurence and investigation of enteric viral infections in pigs with diarrhea in China. Arch Virol, 2013;158(8):1631–1636.
55. Ziemer CJ, Bonner JM, Cole D, et al. Fate and transport of zoonotic, bacterial, viral, and parasitic pathogens during swine manure treatment, storage, and land application. J Anim Sci, 2010;88:E84-E94.
Štítky
Hygiena a epidemiológia Infekčné lekárstvo MikrobiológiaČlánok vyšiel v časopise
Epidemiologie, mikrobiologie, imunologie
2015 Číslo 2
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- Možnosti zoonotického přenosu rotavirových infekcí
- Hepatitida E – přehled současných poznatků
- Prevalence výskytu nosního nosičství kmenů Staphylococcus aureus a meticilin rezistentních kmenů S. aureus (MRSA) u studentů všeobecného lékařství LF UP v Olomouci
- Toxoplasmóza u imunokompromitovaných pacientů