#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Significance and possibilities to examine brain metabolism in neurointensive care by microdialysis


Authors: A. Hejčl 1,7,8,9;  P. Kelbich 3,4,5;  M. Bolcha 1;  J. Procházka 2;  E. Hušková 2;  J. Peruthová 4,6;  M. Sameš 1
Authors place of work: Neurochirurgická klinika Univerzity J. E. Purkyně, Krajská zdravotní, a. s. - Masarykova nemocnice v Ústí nad Labem, o. z. 1;  Oddělení intenzivní medicíny, Krajská zdravotní, a. s. - Masarykova nemocnice v Ústí nad Labem, o. z. 2;  Oddělení klinické biochemie, Krajská zdravotní, a. s. - Masarykova nemocnice v Ústí nad Labem, o. z. 3;  Oddělení klinické biochemie, hematologie a imunologie Nemocnice Kadaň s. r. o. 4;  Ústav klinické imunologie a alergologie, Lékařská fakulta v Hradci Králové, Univerzita Karlova v Praze 5;  Fakulta chemicko-technologická, Univerzita Pardubice 6;  Centrum klinického výzkumu ICRC, Brno 7;  Ústav experimentální medicíny AVČR, v. v. i., Praha 8;  Neurochirurgická klinika 1. lékařské fakulty Univerzity Karlovy a Ústřední vojenské nemocnice v Praze 9
Published in the journal: Klin. Biochem. Metab., 21 (42), 2013, No. 1, p. 13-20

Summary

Objective:
1st Introducing microdialysis and its use in neurosurgery, or neurointensive care, respectively, to professionals in the field of biochemistry. 2nd Introduce the hypothesis on creatinphosphate, an alternative source of energy for the brain tissue.

Design:
Review article

Methods:
Collection of samples of the extracellular fluid enables examination of metabolites of the glucose oxidative metabolism with the aim of detecting early signs of brain ischemia. Microdialysis is used predominantly in patients with brain injury and subarachnoid hemorrhage after aneurysm rupture. Nonetheless, the samples may be examined for a wide scale of metabolites and biological active substances and extend our knowledge of brain metabolism.

Results:
We summarize the current knowledge on the use of microdialysis in neurointensive care of neurosurgical patients, its influence on the therapy and its predictive meaning. In the experimental work we focused on the metabolism of creatine phosphate, which, according to our first observations, can represent alternative energy to glucose oxidative metabolism, as demonstrated on 2 case reports.

Conclusions:
Microdialysis provides direct and continuous online monitoring of brain metabolism in everyday clinical practice. Standard diagnostics can be extended for a spectrum of various other metabolites; the metabolism of creatine phosphate may, according to our first observations, be an alternative source of energy for the brain.

Keywords:
microdialysis, neurointensive care, brain metabolism, glucose metabolism, creatine phosphate system


Zdroje

1. Hejčl, A., Bartoš, R., Humhej, I., et al. Dekompresivní kraniektomie v léčbě posttraumatického edému mozku a přínos nových monitorovacích metod. Cas. Lek. Cesk., 2007, 146, s. 307-312.

2. Hejčl, A., Bolcha, M., Procházka, J., Sameš, M. Multimodální monitorace u pacientů s těžkým poraněním mozku a subarachnoidálním krvácením. Cesk. Slov. Neurol. N., 2009, 72(105), s. 383-387.

3. Hejčl, A., Sameš, M. Mikrodialýza v neurochirurgii. Cesk. Slov. Neurol. N., 2009, 72(105), s. 511-517.

4. Hejčl, A., Krýsl, D., Kuliha, M., Marusič, P., Školoudík, D., Tomek, A. Kompletní přehled neuromonitorace. In: Tomek, A., (ed). Neurointenzivní péče. Praha: Mladá fronta, 2012, s. 87-102.

5. Nilsson, O. G., Brandt, L., Ungerstedt, U., Saveland, H. Bedside detection of brain ischemia using intracerebral microdialysis: subarachnoid hemorrhage and delayed ischemic deterioration. Neurosurgery, 1999, 45, s. 1176-1184.

6. Sarrafzadeh, A. S., Sakowitz, O. W., Kiening, K. L., Benndorf, G., Lanksch, W. R., Unterberg, A. W. Bedside microdialysis: a tool to monitor cerebral metabolism in subarachnoid hemorrhage patients? Crit. Care Med., 2002, 30, s. 1062-1070.

7. Sarrafzadeh, A., Haux, D., Sakowitz, O., et al. Acute focal neurological deficits in aneurysmal subarachnoid hemorrhage: relation of clinical course, CT findings, and metabolite abnormalities monitored with bedside microdialysis. Stroke, 2003, 34, s. 1382-1388.

8. Bellander, B. M., Cantais, E., Enblad, P., et al. Consensus meeting on microdialysis in neurointensive care. Intensive Care Med., 2004, 30, 12, s. 2166-2169.

9. Skjoth-Rasmussen, J., Schulz, M., Kristensen, S. R., Bjerre, P. Delayed neurological deficits detected by an ischemic pattern in the extracellular cerebral metabolites in patients with aneurysmal subarachnoid hemorrhage. J Neurosurg., 2004, 100, s. 8-15.

10. Unterberg, A. W., Sakowitz, O. W., Sarrafzadeh, A. S., Benndorf, G., Lanksch, W. R. Role of bedside microdialysis in the diagnosis of cerebral vasospasm following aneurysmal subarachnoid hemorrhage. J Neurosurg., 2001, 94, s. 740-749.

11. Miller, C. M., Vespa, P. M., McArthur, D. L., Hirt, D., Etchepare, M. Frameless stereotactic aspiration and thrombolysis of deep intracerebral hemorrhage is associated with reduced levels of extracellular cerebral glutamate and unchanged lactate pyruvate ratios. Neurocrit. Care, 2007, 6, s. 22-9.

12. Ko, S. B., Choi, H. A., Parikh, G., et al. Multimodality monitoring for cerebral perfusion pressure optimization in comatose patients with intracerebral hemorrhage. Stroke, 2011, 42, s. 3087-3092.

13. Belli, A., Sen, J., Petzold, A., Russo, S., Kitchen, N., Smith, M. Metabolic failure precedes intracranial pressure rises in traumatic brain injury: a microdialysis study. Acta Neurochir (Wien)., 2008, 150, s. 461-469.

14. Adamides, A. A., Rosenfeldt, F.L., Winter, C. D., et al. Brain tissue lactate elevations predict episodes of intracranial hypertension in patients with traumatic brain injury. J. Am. Coll. Surg., 2009, 209, s. 531-539.

15. Li, A. L., Zhi, D. S., Wang, Q., Huang, H. L. Extracellular glycerol in patients with severe traumatic brain injury. Chin. J. Traumatol., 2008, 11, s. 84-88.

16. Peerdeman, S. M., Girbes, A. R., Polderman, K. H., Vandertop, W. P. Changes in cerebral interstitial gly-cerol concentration in head-injured patients; correlation with secondary events. Intensive Care Med., 2003, 29, s. 1825-1828.

17. Clausen, T., Alves, O. L., Reinert, M., Doppenberg, E., Zauner, A., Bullock, R. Association between elevated brain tissue glycerol levels and poor outcome following severe traumatic brain injury. J Neurosurg., 2005, 103, s. 233-238.

18. Hejčl, A., Bolcha, M., Procházka, J., Hušková, E., Sameš, M. Elevated intracranial pressure, low cerebral perfusion pressure, and impaired brain metabolism correlate with fatal outcome after severe brain injury. J Neurol. Surg. A Cent. Eur. Neurosurg., 2012; 73, s. 10-17.

19. Wyss, M., Kaddurah-Daouk, R. Creatine and creatinine metabolism. Physiol. Rev., 2000, 80, s. 1107-1213.

20. Walker, J. B. Creatine: biosynthesis, regulation, and function. Adv Enzymol Relat. Areas Mol. Biol., 1979, 50, s. 177-242.

21. Defalco, A. J., Davies, R. K. The synthesis of creatine by the brain of the intact rat. J Neurochem., 1961, 7, s. 308-312.

22. Dringen, R., Verleysdonk, S., Hamprecht, B., Willker, W., Leibfritz, D., Brand, A. Metabolism of glycine in primary astroglial cells: synthesis of creatine, serine, and glutathione. J Neurochem., 1998, 70, s. 835-840.

23. Tachikawa, M., Fukaya, M., Terasaki, T., Ohtsuki, S., Watanabe, M. Distinct cellular expressions of creatine synthetic enzyme GAMT and creatine kinases uCK-Mi and CK-B suggest a novel neuron-glial relationship for brain energy homeostasis. Eur. J Neurosci., 2004, 20, s. 144-160.

24. Ohtsuki, S., Tachikawa, M., Takanaga, H., et al. The blood-brain barrier creatine transporter is a major pathway for supplying creatine to the brain. J Cereb. Blood Flow Metab., 2002, 22, s. 1327-1335.

25. Kelbich, P., Slavík, S., Jasanská, J., et al. Hodnocení energetických poměrů v likvorovém kompartmentu pomocí vyšetřování vybraných parametrů metabolismu glukosy v CSF. Klin. Biochem. Metab., 1998, 6 (27), s. 213-225.

26. Kelbich, P., Koudelková, M., Machová, H., et al. Význam urgentního vyšetření mozkomíšního moku pro včasnou diagnostiku neuroinfekcí. Klin. Mikrobiol. Infekc. Lek., 2007, 13, s. 9-20.

27. Kelbich, P., Adam, P., Sobek, O. et al. Základní vyšetření likvoru v diagnostice postižení centrálního nervového systému. Neurol pro praxi, 2009, 10, s. 285-289.

28. Kelbich, P., Procházka, J., Sameš, M., et al. Principy a zvláštnosti neurochirurgické a neurointenzivistické likvorologie (1. část: Úvod do problematiky). Klin. Biochem. Metab., 2011, 19(40), s. 223-228.

29. Kelbich, P., Hejčl, A., Procházka, J., Hanuljaková, E., Peruthová, J., Špička, J. Cytologie a energetika jako důležité atributy vyšetření likvoru. Klin. Biochem. Metab., 2012, 20(41), s. 17-24.

Štítky
Biochémia Nukleárna medicína Nutričný terapeut

Článok vyšiel v časopise

Klinická biochemie a metabolismus

Číslo 1

2013 Číslo 1
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#