#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Overview of Potential Oncomarkers for Detection of Early Stages of Ovarian Cancer


Authors: P. Urban 1;  M. Bilecová-Rabajdová 1;  Z. Štefeková 1;  A. Ostró 2;  M. Mareková 1
Authors place of work: Ústav lekárskej chémie, biochémie a klinickej biochémie a LABMED a. s., Lekárska fakulta UPJŠ, Košice, Slovenská republika 1;  II. gynekologicko-pôrodnícka klinika, Lekárska fakulta UPJŠ, Košice, Slovenská republika 2
Published in the journal: Klin Onkol 2011; 24(2): 106-111
Category: Přehledy

Summary

The causes of ovarian cancer have not been fully elucidated yet but genetic predisposition is found in approximately 10% of patients. When the disease is detected at an early stage, up to 90% of patients have a hope of recovery. However, no preventive measures or precise screening tests to detect early stages of this disease are known yet. Standard tumor markers (CA125) are usually investigated in women with an increased risk. Nevertheless, due to low sensitivity and specificity during the first stage of the cancer, CA125 determination showed a very low efficacy (less than 26%). There has been a considerable progress over the recent years in understanding the molecular mechanisms leading to tumor formation and metastasis. Gradually, 46 genes were identified, initially named tumor endothelial markers (TEM), the expression of which is increased in tumors compared to normal endothelial cells. Death receptor 6 (DR6) and glycoprotein M6B (GPM6B), both detectable from patients serum, are among the most promising candidates for a marker of an early stage of ovarian cancer. This review aims to clearly describe potential as well as clinically used tumor markers useful in an early detection of ovarian cancer. Search for new markers, characterized by increased expression in patients’ blood is a highly topical issue.

Key words:
ovarian cancer – biochemical tumor markers – molecular diagnostics


Zdroje

1. Fiorca JV, Roberts WS. Screening for Ovarian Cancer. Cancer Control 1996; 3(2): 120–129.

2. Knudson AG Jr. Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci USA 1971; 68(4): 820–823.

3. Cavenee WK, Dryja TP, Phillips RA et al. Expression of recessive alleles by chromosomal mechanisms in retinoblastoma. Nature 1983; 305(5937): 779–784.

4. Gallion HH, Powell DE, Smith LW et al. Chromosome abnormalities in human epithelial ovarian malignancies. Gynecol Oncol 1990; 38(3): 473–477.

5. Berchuck A, Boente MP, Kerns BJ et al. Ploidy analysis of epithelial ovarian cancers using image cytometry. Gynecol Oncol 1992; 44(1): 61–65.

6. Thompson FH, Liu Y, Emerson J et al. Simple numeric abnormalities as primary karyotype changes in ovarian carcinoma. Genes Chromosomes Cancer 1994; 10(4): 262–266.

7. Anttila MA, Ji H, Juhola MT et al. The prognostic significance of p53 expression quantitated by computerized image analysis in epithelial ovarian cancer. Int J Gynecol Pathol 1999; 18(1): 42–51.

8. Berchuk A, Kohler MF, Hopkins MP et al. Overexpression of p53 is not a feature of benign and early-stage borderline ovarian tumors. Gynecol Oncol 1994; 52(2): 232–236.

9. Wertheim I, Muto MG, Welch WR et al. p53 gene mutation in human borderline epithelial ovarian tumors. J Natl Cancer Inst 1994; 86(20): 1549–1551.

10. McManus DT, Murphy M, Arthur K et al. p53 mutation, allele loss on chromosome 17p and DNA content in ovarian carcinoma. J Pathol 1996; 179(2): 177–182.

11. Hall JM, Lee MK, Newman B et al. Linkage of early-onset familial breast cancer to chromosome 17q21. Science 1990; 250(4988): 1684–1689.

12. Narod SA, Feunteun J, Lynch HT et al. Familial breast-ovarian cancer locus on chromosome 17q12-q23. Lancet 1991; 338(8759): 82–83.

13. Vogelstein B, Fearon ER, Hamilton SR et al. Genetic alterations during colorectal-tumor development. N Eng J Med 1988; 319(9): 525–532.

14. Ford D, Easton DF, Stratton M et al. Genetic heterogeneity and penetrance analysis of the BRCA1 and BRCA2 genes in breast cancer families. The Breast Cancer Linkage Consortium. Am J Hum Genet 1998; 62(3): 676–689.

15. Struewing JP, Abeliovich D, Peretz T et al. The carrier frequency of the BRCA1 185delAG mutation is approximately 1 percent in Ashkenazi Jewish individuals. Nat Genet 1995; 11(2): 198–200.

16. Gayther SA, Warren W, Mazoyer S  t al. Germline mutations of the BRCA1 gene in breast and ovarian cancer families provide evidence for a genotype-phenotype correlation. Nat Genet 1995; 11(4): 428–433.

17. Wooster R, Neuhausen SL, Mangion J et al. Localization of a breast cancer susceptibility gene, BRCA2, to chromosome 13q12-13. Science 1994; 265(5181): 2088–2090.

18. Tavtigian SV, Simard J, Rommens J et al. The complete BRCA2 gene and mutations in chromosome 13q-linked kindreds. Nat Genet 1996; 12(3): 333–337.

19. Sharan SK, Bradley A. Murine BRCA2: sequence, map position, and expression pattern. Genomics 1997; 40(2): 234–241.

20. Holt JT, Thompson ME, Szabo C et al. Growth retardation and tumor inhibition by BRCA1. Nat Genet 1996; 12(3): 298–302.

21. Scully R, Chen J, Plug A et al. Association of BRCA1 with Rad51 in mitotic and meiotic cells. Cell 1997; 88(2): 265–275.

22. Bast RC Jr, Feeney M, Lazarus H et al. Reactivity of a monoclonal antibody with human ovarian carcinoma. J Clin Invest 1981; 68(5): 1331–1337.

23. Bast RC Jr, Klug TL, St John E et al. A radioimmunoassay using a monoclonal antibody to monitor the course of epithelial ovarian cancer. N Engl J Med 1983; 309(15): 883–887.

24. Woolas RP, Oram DH, Jeyarajah AR et al. Ovarian cancer identified through screening with serum markers but not by pelvic imaging. Int J Gynecol Cancer 1999; 9(6): 497–501.

25. Yousef GM, Diamandis EP. The new human tissue kallikrein gene family: structure, function, and association to disease. Endocr Rev 2001; 22(2): 184–204.

26. Diamandis EP, Scorilas A, Fracchioli S et al. Human kallikrein 6 (hK6): a new potential serum biomarker for diagnosis and prognosis of ovarian carcinoma. J Clin Oncol 2003; 21(6): 1035–1043.

27. Luo LY, Katsaros D, Scorilas A et al. The serum concentration of human kallikrein 10 represents a novel biomarker for ovarian cancer diagnosis and prognosis. Cancer Res 2003; 63(4): 807–811.

28. Diamandis EP, Okui A, Mitsui S et al. Human kallikrein 11: a new biomarker of prostate and ovarian carcinoma. Cancer Res 2002; 62(1): 295–300.

29. Shridhar V, Sen A, Chien J et al. Identification of underexpressed genes in early- and late-stage primary ovarian tumors by suppression subtraction hybridization. Cancer Res 2002; 62(1): 262–270.

30. Schaner ME, Ross DT, Ciaravino G et al. Gene expression patterns in ovarian carcinomas. Mol Biol Cell 2003; 14(11): 4376–4386.

31. Spentzos D, Levine DA, Ramoni MF et al. Gene expression signature with independent prognostic significance in epithelial ovarian cancer. J Clin Oncol 2004; 22(23): 4700–4710.

32. Donninger H, Bonome T, Radonovich M et al. Whole genome expression profiling of advance stage papillary serous ovarian cancer reveals activated pathways. Oncogene 2004; 23(49): 8065–8077.

33. Takahashi T, Nau MM, Chiba I et al. p53: a frequent target for genetic abnormalities in lung cancer. Science 1989; 246(4929): 491–494.

34. Petricoin EF, Ardekani AM, Hitt BA et al. Use of proteomic patterns in serum to identify ovarian cancer. Lancet 2002; 359(9306): 572–577.

35. Zhang Z, Bast RC Jr, Yu Y et al. Three biomarkers identified from serum proteomic analysis for the detection of early stage ovarian cancer. Cancer Res 2004; 64(16): 5882–5890.

36. Bartlett JM. Ovarian Cancer: Methods and Protocols, Methods in Molecular Medicine. Totowa, New Jersey: Humana Press 2000.

37. Bayani J, Brenton JD, Macgregor PF et al. Parallel analysis of sporadic primary ovarian carcinomas by spectral karyotyping, comparative genomic hybridization, and expression microarrays. Cancer Res 2002; 62(12): 3466–3476.

38. Su AI, Welsh JB, Sapinoso LM et al. Molecular classification of human carcinomas by use of gene expression signatures. Cancer Res 2001; 61(20): 7388–7393.

39. Feng H, Ghazizadeh M, Konishi H et al. Expression of MUC1 and MUC2 mucin gene products in human ovarian carcinomas. Jpn J Clin Oncol 2002; 32(12): 525–529.

40. Giacona MB, Ruben GC, Iczkowski KA et al. Cell-free DNA in human blood plasma: length measurements in patients with pancreatic cancer and healthy controls. Pancreas 1998; 17(1): 89–97.

41. Jahr S, Hentze H, Englisch S et al. DNA fragments in the blood plasma of cancer patients: quantitations and evidence of their origin from apoptotic and necrotic cells. Cancer Res 2001; 61(4): 1659–1665.

42. Sorenson GD, Pribish DM, Valone FH et al. Soluble normal and mutated DNA sequences from single-copy genes in human blood. Cancer Epidemiol Biomarkers Prev 1994; 3(1): 67–71.

43. Sorenson GD. Detection of mutated KRAS2 sequences as tumor markers in plasma/serum of patients with gastrointestinal cancer. Clin Cancer Res 2000; 6(6): 2129–2137.

44. Anker P, Mulcahy H, Chen XQ et al. Detection of circulating tumour DNA in the blood (plasma/serum) of cancer patients. Cancer Metastasis Rev 1999; 18(1): 65–73.

45. Bussink AP, Speijer D, Aerts JM et al. Evolution of mammalian chitinase(-like) members of family 18 glycosyl hydrolases. Genetics 2007; 177(2): 959–970.

46. Johansen JS, Jensen BV, Roslind A et al. Serum YKL-40, a new prognostic biomarker in cancer patients? Cancer Epidemiol Biomarkers Prev 2006; 15(2): 194–202.

47. Yamac D, Ozturk B, Coskun U et al. Serum YKL-40 levels as a prognostic factor in patients with locally advanced breast cancer. Adv Ther 2008; 25(8): 801–809.

48. Roslind A, Knoop AS, Jensen MB et al. YKL-40 protein expression is not a prognostic marker in patients with primary breast cancer. Breast Cancer Res Treat 2008; 112(2): 275–285.

49. Lau SH, Sham JS, Xie D et al. Clusterin plays an important role in hepatocellular carcinoma metastasis. Oncogene 2006; 25(8): 1242–1250.

50. Mitsuhashi A, Matsui H, Usui H et al. Serum YKL-40 as a marker for cervical adenocarcinoma. Ann Oncol 2009; 20(1): 71–77.

51. Kucur M, Isman FK, Balci C et al. Serum YKL-40 levels and chitotriosidase activity as potential biomarkers in primary prostate cancer and benign prostatic hyperplasia. Urol Oncol 2008; 26(1): 47–52.

52. Bamberger ES, Perrett CW. Angiogenesis in epithelian ovarian cancer. Mol Pathol 2002; 55(6): 348–359.

53. Ozols RF. Systemic therapy for ovarian cancer: current status and new treatments. Semin Oncol 2006; 33 (2 Suppl 6): S3–S11.

54. St Croix B, Rago C, Velculescu V et al. Genes expressed in human tumor endothelium. Science 2000; 289(5482): 1197–1202.

55. Seaman S, Stevens J, Yang MY et al. Genes that distinguish physiological and pathological angiogenesis. Cancer Cell 2007; 11(6): 539–554.

56. MacFadyen JR, Haworth O, Roberston D et al. Endosialin (TEM1, CD248) is a marker of stromal fibroblasts and is not selectively expressed on tumour endothelium. FEBS Lett 2005; 579(12): 2569–2575.

57. Conejo-Garcia JR, Benencia F, Courreges MC et al. Tumor-infiltrating dendritic cell precursors recruited by a beta-defensin contribute to vasculogenesis under the influence of Vegf-A. Nat Med 2004; 10(9): 950–958.

58. Conejo-Garcia JR, Buckanovich RJ, Benencia F. Vascular leukocytes contribute to tumor vascularization. Blood 2005; 105(2): 679–681.

59. Lu C, Bonome T, Li Y et al. Gene alterations identified by expression profiling in tumor-associated endothelial cells from invasive ovarian carcinoma. Cancer Res 2007; 67(4): 1757–1768.

60. Buckanovich RJ, Sasaroli D, O’Brien-Jenkins A et al. Tumor vascular proteins as biomarkers in ovarian cancer. J Clin Oncol 2007; 25(7): 852–861.

61. Baichwal VR, Baeuerle PA. Activate NF-kappa B or die? Curr Biol 1997; 7(2): R94–R96.

62. Smith CA, Farrah T, Goodwin RG. The TNF receptor superfamily of cellular and viral proteins: activation, costimulation, and death. Cell 1994; 76(6): 959–962.

63. Anderson DM, Maraskovsky E, Billingsley WL et al. A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature 1997; 390(6656): 175–179.

64. Pan G, O’Rourke K, Chinnaiyan AM et al. The receptor for the cytotoxic ligand TRAIL. Science 1997; 276(5309): 111–113.

Štítky
Detská onkológia Chirurgia všeobecná Onkológia

Článok vyšiel v časopise

Klinická onkologie

Číslo 2

2011 Číslo 2
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#