#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Molecular Mechanisms of Zinc in Prostate Cancer


Authors: J. Gumulec 1;  M. Masařík 1;  S. Křížková 4;  P. Babula 2;  R. Hrabec 3;  A. Rovný 3;  M. Masaříková 4;  R. Kizek 4
Authors place of work: Ústav patologické fyziologie, Lékařská fakulta, Masarykova univerzita, Brno 1;  Ústav přírodních léčiv, Farmaceutická fakulta, Veterinární a farmaceutická univerzita, Brno 2;  Urologické oddělení, Fakultní nemocnice u sv. Anny, Brno 3;  Ústav chemie a biochemie, Agronomická fakulta, Mendelova univerzita, Brno 4
Published in the journal: Klin Onkol 2011; 24(4): 249-255
Category: Přehledy

Summary

In many developed countries, prostate cancer is the most common male tumour disease. The high incidence and mortality requires early diagnosis, differentiation of aggressive, highly malignant forms from clinically silent forms and understanding of the pathogenesis with its typical metabolic aberrancies (if any) in order to develop new targeted therapies. Prostate cells (including prostate cancer cells) are unique in their relation to zinc ions. Prostate tissue can accumulate these ions in up to tenfold higher concentration than other body cells. These ions influence many cellular processes incl. proliferation, differentiation and apoptosis. Prostate cancer cells lack ability to accumulate zinc. Therefore, zinc ions may be expected to play an important role in the disease pathogenesis, in its propagation and metastatic potential of tumour cells. Intracellular zinc levels are regulated by zinc-binding proteins, especially metallothioneins, and zinc transporters. Zinc level regulation dysfunction has been identified in prostate cancer cells and may thus play an important role in the prostate cancer patho­genesis. Moreover, due to its overproduction by prostate tissue, metallothionein serum levels are elevated and can be used as an important tumour marker.

Key words:
prostate – neoplasms – zinc – metallothionein – glutathione – apoptosis


Zdroje

1. Wit RD, Sternberg CN. Cancers of the Genitourinary Tract. In: Cavalli F, Hansen HH, Kaye SB (eds). Textbook of medical oncology, Informa Healthcare. London: Dunitz 2009.

2. Kuroda N, Katto K, Tamura M et al. Immunohistochemical application of D2-40 as basal cell marker in evaluating atypical small acinar proliferation of initial routine prostatic needle biopsy materials. Med Mol Morphol 2010; 43(3): 165–169.

3. Študent V, Grepl M, Král M et al. Má vyšetření PSA stále význam při vyhledávání karcinomu prostaty? Urol pro Praxi 2006; 5(5): 214–218.

4. Jamaspishvili T, Kral M, Khomeriki I et al. Urine markers in monitoring for prostate cancer. Prostate Cancer Prostatic Dis 2010; 13(1): 12–19.

5. Habib FK. Evaluation of androgen metabolism studies in human prostate cancer – correlation with zinc levels. Prev Med 1980; 9(5): 650–656.

6. Andreini C, Banci L, Bertini I et al. Counting the zinc--proteins encoded in the human genome. J Proteome Res 2006; 5(1): 196–201.

7. Oteiza P, Mackenzie G. Zinc, oxidant-triggered cell signaling, and human health. Mol Aspects Med 2005; 26(4–5): 245–255.

8. Kambe T, Yamaguchi-Iwai Y, Sasaki R et al. Overview of mammalian zinc transporters. Cell Mol Life Sci 2004; 61(1): 49–68.

9. Colvin RA, Holmes WR, Fontaine CP et al. Cytosolic zinc buffering and muffling: their role in intracellular zinc homeostasis. Metallomics 2010; 2(5): 306–317.

10. Vallee B, Auld D. Short and long spacer sequences and other structural features of zinc binding sites in zinc enzymes. FEBS Lett 1989; 257(1): 138–140.

11. Maret W, Li Y. Coordination dynamics of zinc in proteins. Chem Rev 2009; 109(10): 4682–4707.

12. Hirano T, Murakami M, Fukada T et al. Roles of zinc and zinc signaling in immunity: zinc as an intracellular signaling molecule. Adv Immunol 2008; 97: 149–176.

13. Hogstrand C, Kille P, Nicholson RI et al. Zinc transporters and cancer: a potential role for ZIP7 as a hub for tyrosine kinase activation. Trends Mol Med 2009; 15(3): 101–111.

14. Yamasaki S, Sakata-Sogawa K, Hasegawa A et al. Zinc is a novel intracellular second messenger. J Cell Biol 2007; 177(4): 637–645.

15. Laity JH, Andrews GK. Understanding the mechanisms of zinc-sensing by metal-response element binding transcription factor-1 (MTF-1). Arch Biochem Biophys 2007; 463(2): 201–210.

16. Costello L, Liu Y, Zou J et al. Evidence for a zinc uptake transporter in human prostate cancer cells which is regulated by prolactin and testosterone. J Biol Chem 1999; 274(25): 17499–17504.

17. Coyle P, Philcox JC, Carey LC et al. Metallothionein: the multipurpose protein. Cell Mol Life Sci 2002; 59(4): 627–647.

18. Franklin RB, Milon B, Feng P et al. Zinc and zinc transporter in normal prostate function and the pathogenesis of prostate cancer. Front Biosci 2005; 10: 2230–2239.

19. Vallee BL, Falchuk KH. The biochemical basis of zinc physiology. Physiol Rev 1993; 73(1): 79–118.

20. Costello L, Franklin R. The clinical relevance of the metabolism of prostate cancer; zinc and tumor suppression: connecting the dots. Mol Cancer 2006; 5(1): 17.

21. Mycielska M, Patel A, Rizaner N et al. Citrate transport and metabolism in mammalian cells: prostate epithelial cells and prostate cancer. Bioessays 2009; 31(1): 10–20.

22. Medrano A, Fernández-Novell J, Ramió L et al. Utilization of citrate and lactate through a lactate dehydrogenase and ATP-regulated pathway in boar spermatozoa. Mol Reprod Dev 2006; 73(3): 369–378.

23. Costello L, Liu Y, Franklin R et al. Zinc inhibition of mitochondrial aconitase and its importance in citrate metabolism of prostate epithelial cells. J Biol Chem 1997; 272(46): 28875–28881.

24. Costello LC, Franklin RB. The intermediary metabolism of the prostate: a key to understanding the pathogenesis and progression of prostate malignancy. Oncology 2000; 59(4): 269–282.

25. Müntzing J, Varkarakis M, Saroff J et al. Comparison and significance of respiration and glycolysis of prostatic tissue from various species. J Med Primatol 1975; 4(4): 245–251.

26. Feng P, Liang JY, Li TL et al. Zinc induces mitochondria apoptogenesis in prostate cells. Mol Urol 2000; 4(1): 31–36.

27. Feng P, Li T, Guan Z et al. The involvement of Bax in zinc-induced mitochondrial apoptogenesis in malignant prostate cells. Mol Cancer 2008; 7(1): 25.

28. Jiang D, Sullivan P, Sensi S et al. Zn(2+) induces permeability transition pore opening and release of pro-apoptotic peptides from neuronal mitochondria. J Biol Chem 2001; 276(50): 47524–47529.

29. Franklin R, Ma J, Zou J et al. Human ZIP1 is a major zinc uptake transporter for the accumulation of zinc in prostate cells. J Inorg Biochem 2003; 96(2–3): 435–442.

30. Golovine K, Makhov P, Uzzo R et al. Overexpression of the zinc uptake transporter hZIP1 inhibits nuclear factor-kappaB and reduces the malignant potential of prostate cancer cells in vitro and in vivo. Clin Cancer Res 2008; 14(17): 5376–5384.

31. Milon B C, Agyapong A, Bautista R et al. Ras responsive element binding protein-1 (RREB-1) down-regulates hZIP1 expression in prostate cancer cells. Prostate 2010; 70(3): 288–296.

32. Ray SK, Nishitani J, Petry MW et al. Novel transcriptional potentiation of BETA2/NeuroD on the secretin gene promoter by the DNA-binding protein Finb/RREB-1. Mol Cell Biol 2003; 23(1): 259–271.

33. Thiagalingam A, De Bustros A, Borges M et al. RREB-1, a novel zinc finger protein, is involved in the differentiation response to Ras in human medullary thyroid carcinomas. Mol Cell Biol 1996; 16(10): 5335–5345.

34. Gioeli D. Signal transduction in prostate cancer progression. Clin Sci 2005; 108(4): 293–308.

35. Taylor KM, Morgan HE, Smart K et al. The emerging role of the LIV-1 subfamily of zinc transporters in breast cancer. Mol Med 2007; 13(7–8): 396–406.

36. Hasumi M, Suzuki K, Matsui H et al. Regulation of metallothionein and zinc transporter expression in human prostate cancer cells and tissues. Cancer Lett 2003; 200(2): 187–195.

37. Modica-Napolitano JS, Singh KK. Mitochondrial dysfunction in cancer. Mitochondrion 2004; 4(5–6): 755–762.

38. Banas A, Kwiatek WM, Banas K et al. Correlation of concentrations of selected trace elements with Gleason grade of prostate tissues. J Biol Inorg Chem 2010; 15(7): 1147–1155.

39. Tappel A. Heme of consumed red meat can act as a catalyst of oxidative damage and could initiate colon, breast and prostate cancers, heart disease and other diseases. Med Hypotheses 2007; 68(3): 562–564.

40. Sapota A, Darago A, Taczalski J et al. Disturbed homeostasis of zinc and other essential elements in the prostate gland dependent on the character of pathological lesions. Biometals 2009; 22(6): 1041–1049.

41. Zachara BA, Szewczyk-Golec K, Wolski Z et al. Selenium level in benign and cancerous prostate. Biol Trace Elem Res 2005; 103(3): 199–206.

42. Kiziler AR, Aydemir B, Guzel S et al. May the level and ratio changes of trace elements be utilized in identification of disease progression and grade in prostatic cancer? J Trace Elem Electrolytes Health Dis 2010; 27(2): 65–72.

43. Kanoh W, Ohtani N, Mashiko T et al. Levels of alpha(2) macroglobulin can predict bone metastases in prostrate cancer. Anticancer Res 2001; 21(1B): 551–556.

44. Guo JK, Deng WH, Zhang LC et al. Prediction of prostate cancer using hair trace element concentration and support vector machine method. Biol Trace Elem Res 2007; 116(3): 257–271.

45. Kizek R, Vacek J, Trnkova L et al. Využití katalytických reakcí na rtuťové elektrodě pro elektrochemické stanovení metalothioneinů. Chem Listy 2004; 98(4).

46. Eckschlager T, Adam V, Hrabeta J et al. Metallothioneins and cancer. Curr Protein Pept Sci 2009; 10(4): 360–375.

47. Krizkova S, Fabrik I, Adam V et al. Metallothionein – a promising tool for cancer diagnostics. Bratisl Lek Listy 2009; 110(2): 93–97.

48. Masarik M, Gumulec J, Kuchtickova S et al. Determination of novel tumor markers in prostate carcinoma. FEBS J 2010; 277(1): 188–188.

49. Gumulec J, Cernei NV, Zitka O et al. Zinc, Metallothio­nein and Prostate Tumour Cells – Is There Any Relation? 10th International Nutrition & Diagnostics Conference. Prague 2010.

50. Fabrik I, Adam V, Krizkova S et al. Level of heat-stable thiols in patients with a malignant tumor. Klin Onkol 2007; 20(6): 384–389.

51. Gumulec J, Masarik M, Hrabec R et al. Zinc and its relation to prostate tumous. Prakt Lek 2010; 90(8): 455–459.

52. Kizek R, Vacek J, Adam V et al. Metallothionein – Cisplatine and anticancer therapy. Klin Biochem Metab 2004; 12(2): 72–78.

53. Petrlova J, Blastik O, Prusa R et al. Determination of metallothionein content in patients with breast cancer, colon cancer, and malignant melanoma. Klin Onkol 2006; 19(2): 138–142.

54. Zelena J, Potesil D, Vacek J et al. Metallothionein as a prognostic marker of tumor disease. Klin Onkol 2004; 17(6): 190–195.

55. Masarik M, Gumulec J, Kuchtickova S et al. Detection of metallothionein and alphamethylacyl CoA racemase as potential new markers for prostate carcinoma. Int J Mol Med 2009; 24 (Suppl 1): S48.

Štítky
Detská onkológia Chirurgia všeobecná Onkológia

Článok vyšiel v časopise

Klinická onkologie

Číslo 4

2011 Číslo 4
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#