DEVELOPMENT OF NEW TECHNIQUE FOR ACCURATE WEAR ANALYSIS OF EXPLANTED TOTAL HIP REPLACEMENTS
Wear is a fundamental problem in relation to the life-time of the hip joint implants, especially for the components of the ultra-high molecular weight polyethylene (UHMWPE). Therefore, the better understanding of the properties and capabilities of UHMWPE related to wear is crucial for the improvement of the implants' behavior. The purpose of this study is to present a new methodology for calculating volumetric wear of retrieved hip prostheses using a combination of novel co-ordinate measuring machine data and Matlab GUI program (Mathworks, Inc.). Method utilizes the unworn portion of the explanted acetabular cup to create or reconstruct the original unworn surface. From these unworn surfaces, it is possible to directly calculate volumetric wear and to graphically map the wear scar, i.e. the penetration of the femoral head into the acetabular cup.
Keywords:
Explanted Cups, UHMWPE, Wear determination, Coordinate Measuring Machine (CMM)
Autoři:
Vlastimil Králík; Jan Mervart; Jakub Kronek
Působiště autorů:
Department of Mechanics, Biomechanics and Mechatronics, Faculty of Mechanical Engineering, Czech Technical University in Prague, Czech Republic
Vyšlo v časopise:
Lékař a technika - Clinician and Technology No. 3, 2017, 47, 96-100
Kategorie:
Původní práce
Souhrn
Wear is a fundamental problem in relation to the life-time of the hip joint implants, especially for the components of the ultra-high molecular weight polyethylene (UHMWPE). Therefore, the better understanding of the properties and capabilities of UHMWPE related to wear is crucial for the improvement of the implants' behavior. The purpose of this study is to present a new methodology for calculating volumetric wear of retrieved hip prostheses using a combination of novel co-ordinate measuring machine data and Matlab GUI program (Mathworks, Inc.). Method utilizes the unworn portion of the explanted acetabular cup to create or reconstruct the original unworn surface. From these unworn surfaces, it is possible to directly calculate volumetric wear and to graphically map the wear scar, i.e. the penetration of the femoral head into the acetabular cup.
Keywords:
Explanted Cups, UHMWPE, Wear determination, Coordinate Measuring Machine (CMM)
Zdroje
[1] Bills, P., Blunt, L., Jiang, X.: Development of a technique for accurately determining clinical wear in explanted total hip replacements. Wear. 2007, vol. 263, no. 7–12 , p. 1133–1137.
[2] Kosak, R., Antolic, V., Pavlovcic, V., Kralj-Iglic, V., Milosev, I., Vidmar, G., Iglic, A.: Polyethylene wear in total hip prostheses: the influence of direction of linear wear on volumetric wear determined from radiographic data. Skeletal Radiology. 2003, vol. 32, no. 12, p. 679–686.
[3] Uddin, M. S.: Wear Measurement and Assessment of Explanted Cross-Linked PE Acetabular Cups Using a CMM. Tribology Transactions. 2014, vol. 57, no. 5, p. 767–777.
[4] Lord, J. K., Langton, D. J., Nargol, A. V. F., Joyce, T. J.: Volumetric wear assessment of failed metal-on-metal hip resurfacing prostheses. Wear. 2011, vol. 272, no. 1, p. 79–87.
[5] Gallo, J., Havránek, V., Zapletalová, J., Mandát, D.: Measurement of Acetabular Polyethylene Wear, Using a Universal Measuring Microscope, in Total Hip Replacement. Acta Chirurgiae Orthopaedicae Et Traumatologiae Čechosl. 2006, vol. 73, no. 1, p. 28–33.
[6] Uddin, M. S., Mak, C. Y. E., Callary, S. A.: Evaluating hip implant wear measurements by CMM technique. Wear. 2016, vol. 364, p. 193–200.
[7] Tuke, M., Taylor, A., Roques, A., Maul, C.: 3D linear and volumetric wear measurement on artificial hip joints-Validation of a new methodology. Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology. 2010, vol. 34, no. 4, p. 777–783.
[8] Mervart, J.: Analysis of hip joint cup wear. Prague: CTU 2016. Master thesis, CTU, Faculty of Mechanical Engineering.
[9] ISO 7206-2:2011, “Implants for surgery -- Partial and total hip joint prostheses -- Part 2: Articulating surfaces made of metallic, ceramic and plastics materials”.
[10] Trommer, R. M., Maru, M. M., Filho, O. W. L., Nykanen, V. P. S., Gouvea, C. P., Archanjo, B. S., Ferreira, M. E. H., Silva, R. F., Achete, C. A.: Multi-Scale Evaluation of Wear in UHMWPE-Metal Hip Implants Tested in a hip Joint Simulator. Biotribology. 2015, vol. 4, p. 1–11.
[11] Kurtz, S. M.: Chapter 8 - The Clinical Performance of UHMWPE in Knee Replacements. In: Steven M. KURTZ, ed. UHMWPE Biomaterials Handbook (Second Edition). Boston: Academic Press, 2009, pp. 97–116. ISBN 978-0-12-374721-1.
Štítky
BiomedicínaČlánok vyšiel v časopise
Lékař a technika
2017 Číslo 3
Najčítanejšie v tomto čísle
- DEVELOPMENT OF NEW TECHNIQUE FOR ACCURATE WEAR ANALYSIS OF EXPLANTED TOTAL HIP REPLACEMENTS
- RELIABILITY AND SOURCE OF ERRORS IN END-TIDAL GAS CONCENTRATION EVALUATION ALGORITHMS DURING AVALANCHE SNOW AND REBREATHING EXPERIMENTS
- DESIGN OF AN EXPERIMENTAL LASER SPECKLE CONTRAST IMAGING SYSTEM AND IMAGE
- DETERMINATION OF THE GEOMETRICAL AND VISCOELASTIC PROPERTIES OF SCAFFOLDS MADE BY ADdITIVE MANUFACTURING USING BIOPLOTTER