#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

CHARACTERIZATION OF THE BIAS BETWEEN OXYGEN SATURATION MEASURED BY PULSE OXIMETRY AND CALCULATED BY AN ARTERIAL BLOOD GAS ANALYZER IN CRITCALLY ILL NEONATES


Continuous monitoring of oxygenation with pulse oximetry is the standard of care for critically ill neonates. A better understanding of its measurement bias compared to arterial oxygen saturation could be helpful both for the clinician and researcher. Towards that end, we examined the electronic database from a large neonatal ICU. From a 24-month period we identified 25,032 paired SpO2-SaO2 measurements from 1,007 infants who were receiving supplemental oxygen during mechanical ventilation. We found that SpO2 was consistently higher than SaO2. The size of the bias was fairly constant when SpO2 was between 75–93%, above which it dropped steadily. The median size of this bias was 1% SpO2 during hyperoxemia (SpO2 97–100%) with a median variation of 1.3% above and below. During periods of hypoxemia (SpO2 75–85%) and normoxemia (SpO2 89–93%) the bias was approximately 5% SpO2, with a median variation of 5% above and below.

Keywords:
Pulse oximetry, neonatal oxygenation, oxygen saturation


Autoři: Thomas E. Bachman 1;  Christopher J. L. Newth 2;  Patrick A. Ross 2;  Narayan P. Iyer 2;  Robinder G. Khemani 2
Působiště autorů: Czech Technical University in Prague, Kladno, Czech Republic 1;  Children’s Hospital Los Angeles, Los Angeles, USA 2
Vyšlo v časopise: Lékař a technika - Clinician and Technology No. 4, 2017, 47, 130-134
Kategorie: Původní práce

Souhrn

Continuous monitoring of oxygenation with pulse oximetry is the standard of care for critically ill neonates. A better understanding of its measurement bias compared to arterial oxygen saturation could be helpful both for the clinician and researcher. Towards that end, we examined the electronic database from a large neonatal ICU. From a 24-month period we identified 25,032 paired SpO2-SaO2 measurements from 1,007 infants who were receiving supplemental oxygen during mechanical ventilation. We found that SpO2 was consistently higher than SaO2. The size of the bias was fairly constant when SpO2 was between 75–93%, above which it dropped steadily. The median size of this bias was 1% SpO2 during hyperoxemia (SpO2 97–100%) with a median variation of 1.3% above and below. During periods of hypoxemia (SpO2 75–85%) and normoxemia (SpO2 89–93%) the bias was approximately 5% SpO2, with a median variation of 5% above and below.

Keywords:
Pulse oximetry, neonatal oxygenation, oxygen saturation


Zdroje

1. Sweet, D. G., Carnielli, V., Greisen, G, et al.: European consensus guidelines on the management of neonatal respiratory distress syndrome in preterm infants – 2016 update. Neonatology 2017; 111(2), 107–125.

2. Cummings, J. J., Polin, R. A.: Committee on Fetus and Newborn. Oxygen targeting in extremely low birth weight infants. Pediatrics 2016; 138(2), e20161576.

3. Ross, P. A., Newth, C. J. L., Khemani, R.: Accuracy of pulse oximetry in children. Pediatrics 2014; 133, 22–29.

4. Rosychuk, R. J., Hudson-Mason, A., Eklund, D., Lacaze-Masmonteil, T.: Discrepancies between arterial oxygen saturation and functional oxygen saturation measured with pulse oximetry in very preterm infants. Neonatology 2012; 101(1), 14–18.

5. Bachman, T. E., Newth, C. J. L., Ross, P. A. et al.: Pulse-oximetry readings and hypoxemia and hyperoxemia: NICU observational study. 2017 In-Press.

6. De Halleux, V., Truttmann, A., Gagnon, Bard, H.: The effect of blood transfusion on the hemoglobin oxygen dissociation curve of very early preterm infants during the first week of life. Semin Perinatol. 2002 Dec;26(6):411-5.

7. Shiao, S. Y.: Effects of fetal hemoglobin on accurate measurements of oxygen saturation in neonates. Perinat Neonatal Nurs. 2005 Oct-Dec;19(4):348-61.

8. Johnston, E. D., Boyle, B., Juszczak, E. et al.: Oxygen targeting in preterm infants using the Masimo SET Radical pulse oximeter. Arch Dis Child Fetal Neonatal Ed 2011; 96: F429−F433.

9. Gerstmann, D., Berg, R., Haskell, R., et al.: Operational valuation of pulse oximetry in NICU patients with arterial access. J Perinatol 2003; 23, 378–383.

10. Severinghaus, J. W.: Simple and accurate equations for human blood O2 dissociation computations. J. Appl. Physiol., 46, 1979, p. 599–602.

Štítky
Biomedicína
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#