#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

EEG MICROSTATES ANALYSIS IN PATIENTS WITH EPILEPSY


Autoři: Vaclava Piorecka 1,2;  Marek Piorecký 1,2;  Jan Strobl 1,2;  Marie Nezbedova 1;  Hana Schaabova 1;  Vladimir Krajca 1
Vyšlo v časopise: Lékař a technika - Clinician and Technology No. 3, 2018, 48, 96-102
Kategorie: Original research

Souhrn

Analysis of microstates in electroencephalographic recordings (EEG) is a promising topographical method that is currently being studied for the diagnosis of neuropsychiatric diseases. The aim of our study is to describe the feasibility of using the microstate analysis of EEG for examination of the epileptic patients. The EEG recordings were measured on patients with epilepsy and on control subjects (with no epileptic pathology). We calculated the global field power (GFP) curve to extract microstates from the EEG recordings. We took local maxima (peaks) of GFP curve to create amplitude topographic maps. Four microstates can be found or are proven to be found in physiological activity, sleeping, and in some pathological activity (schizophrenia). Our goal is to find out if the same microstates also occur in patients with epilepsy. Our assumption is that, if all four identical microstates are present in EEG with epileptic activity, the parameters of these microstates should differ between the EEG of a healthy individual and a person suffering from epilepsy. We observed that the microstate 1 seems to have a higher occurrence for the non-epileptic controls than the patients with epilepsy. The duration of the microstate 4 seems to be higher in the epileptic patients than the non-epileptic controls. We have found that there is a significant difference in the duration, occurrence and contribution of the amplitude topographic maps between the non-epileptic controls and the patients with epilepsy.

Keywords:

EEG, Microstates, GFP, Epileptic activity


Zdroje
  1. Lehmann, D., Faber, P. L., Galderisi, S., Herrmann, W. M., Kinoshita, T., Koukkou, M., Mucci, A., Pascual-Marqui, R. D., Saito, N., Wackermann, J., Winterer, G., Koenig, T.: EEG microstate duration and syntax in acute, medication-naïve, first-episode schizophrenia: a multi-center study. Psychiatry Research: Neuroimaging 138(2), 141–156 (2005). DOI: 10.1016/j.pscychresns.2004.05.007.

  2. Michel, C. M., Koenig, T.: EEG microstates as a tool for studying the temporal dynamics of whole-brain neuronal networks: A review. NeuroImage 180(Pt B), 577-593 (2018). DOI: 10.1016/j.neuroimage.2017.11.062, ISSN 10538119.

  3. Britz, J., Van de Ville, D., Michel, C. M.: BOLD correlates of EEG topography reveal rapid resting-state network dynamics. NeuroImage 52(4), 1162–1170 (2010). DOI: 10.1016/j.neuro-image.2010.02.052.

  4. Koenig, T., Prichep, L., Lehmann, D., Sosa, P. V., Braeker, E., Kleinlogel, H., Isenhart, R., John, E.: Millisecond by millisecond, year by year: Normative EEG microstates and developmental stages. NeuroImage 16(1), 41–48 (2002). DOI: 10.1006/nimg.
    2002.1070.

  5. Milz, P., Faber, P., Lehmann, D., Koenig, T., Kochi, K., Pascual-Marqui, R.: The functional significance of EEG microstates – associations with modalities of thinking. NeuroImage 125, 643–656 (2016). DOI: 10.1016/j.neuroimage.2015.08.023.

  6. Kikuchi, M., Koenig, T., Wada, Y., Higashima, M., Koshino, Y., Strik, W., Dierks, T.: Native EEG and treatment effects in neuroleptic-naive schizophrenic patients: Time and frequency domain approaches. Schizophrenia Research 97(1-3), 163–172 (2007). DOI: 10.1016/j.schres.2007.07.012.

  7. Nishida, K., Morishima, Y., Yoshimura, M., Isotani, T., Irisawa, S., Jann, K., Dierks, T., Strik, W., Kinoshita, T., Koenig, T.: EEG microstates associated with salience and frontoparietal networks in frontotemporal dementia, schizophrenia and Alzheimer’s disease. Clinical Neurophysiology 124(6), 1106–1114 (2013). DOI: 10.1016/j.clinph.2013.01.005.

  8. Kikuchi, M., Koenig, T., Munesue, T., Hanaoka, A., Strik, W., Dierks, T., Koshino, Y., Minabe, Y., Yoshikawa, T.: EEG microstate analysis in drug-naive patients with panic disorder. PLoS ONE 6(7), e22912 (2011). DOI: 10.1371/journal.pone.
    0022912.

  9. Khanna, A., Pascual-Leone, A., Michel, C. M., Farzan, F.: Microstates in resting – state EEG: Current status and future directions. Neuroscience & Biobehavioral Reviews 49, 105–113 (2015). DOI: 10.1016/j.neubiorev.2014.12.010.

  10. Hamandi, K., Routley, B. C., Koelewijn, L., Singh, K. D.: Noninvasive brain mapping in epilepsy: Applications from magnetoencephalography. Journal of Neuroscience Methods 260, 283–291 (2016). DOI: 10.1016/j.jneumeth.2015.11.012.

  11. Arab, M. R., Suratgar, A. A., Ashtiani, A. R.: Electroencephalo-gram signals processing for topographic brain mapping and epilepsies classification. Computers in Biology and Medicine 40(9), 733–739 (2010). DOI: 10.1016/j.compbiomed.2010.06.
    001.

  12. Formaggio, E., Storti, S. F., Bertoldo, A., Manganotti, P., Fiaschi, A., Toffolo, G. M.: Integrating EEG and fMRI in epilepsy. NeuroImage 54(4), 2719–2731 (2011). DOI: 10.1016/j.
    neuroimage.2010.11.038.

  13. Marušič, P.: Chyby při hodnocení a interpretaci EEG (oral presentation). 32. Slovenský a český neurologický zjazd, 28. 11. – 1. 12. 2018. Martin, Slovak Republic, [presented No-vember 28th 2018, Section: Epilepsia 2], www.scnz2018.sk.

  14. Santarnecchi, E., Khanna, A. R., Musaeus, C. S., et al.: EEG Microstate Correlates of Fluid Intelligence and Response to Cognitive Training. Brain Topography 30(4), 502–520 (2017). ISSN 0896-0267. DOI: 10.1007/s10548-017-0565-z.

  15. Koenig, T., Lehmann, D., Merlo M. C. G., Kochi, K., Hell, D., Koukkou, M.: A deviant EEG brain microstate in acute, neuroleptic-naive schizophrenics at rest. European Archives of Psychiatry and Clinical Neuroscience 249(4), 205–211 (1999). DOI: 10.1007/s004060050088. ISSN 0940-1334.

  16. Khanna, A., Pascual-Leone, A., Farzan, F.: Reliability of resting-state microstate features in electroencephalography. PLoS One 9(12), e114163 (2014). DOI: 10.1371/journal.pone.0114163.

  17. Siclari, F., Baird, B., Perogamvros, L., et al.: The neural correlates of dreaming. Nature Neuroscience 20(6), 872–878 (2017). DOI: 10.1038/nn.4545. ISSN 1097-6256.

  18. Delorme, A., Makeig, S.: EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods 134(1), 9–21 (2004). DOI: 10.1016/j.jneumeth.2003.10.009.

  19. Koenig, T.: The EEGLAB plugin for microstates (2017), Available from: http://www.thomaskoenig.ch/index.php/
    software/microstates-in-eeglab/

  20. Rokach, L., Maimon, O.: Clustering methods. In: Maimon O., Rokach L. (eds). Data Mining and Knowledge Discovery Handbook. Springer US, Boston, MA, 321–352 (2005). DOI: 10.1007/0-387-25465-X_15.

  21. Liu, W., Liu, X., Dai, R., Tang, X.: Exploring differences between left and right hand motor imagery via spatio-temporal EEG microstate. Computer Assisted Surgery 22(sup1), 258–266 (2017). DOI: 10.1080/24699322.2017.1389404.

  22. Ihl, R., Dierks, T., Froelich, L., Martin, E. M., Maurer, K.: Segmentation of the spontaneous EEG in dementia of the Alzheimer type. Neuropsychobiology 27(4), 231–236 (2004). DOI: 10.1159/000118986.

  23. Paulus, M., Komarek, V., Prochazka, T., Hrncir, V., Sterbova, K.: Synchronization and information flow in EEGs of epileptic patients. IEEE Engineering in Medicine and Biology Society 20(5), 65–71 (2001). DOI: 10.1109/51.956821.

  24. Gao, F., Jia, H., Wu, X., Yu, D., Feng, Y.: Altered resting-state EEG microstate parameters and enhanced spatial complexity in male adolescent patients with mild spastic diplegia. Brain Topography 30(2), 233–244 (2017). ISSN 0896-0267. DOI: 10.1007/s10548-016-0520-4.

  25. Seitzman, B. A., Abell, M., Bartley, S. C., Erickson, M. A., Bolbecker, A. R., Hetrick, W. P.: Cognitive manipulation of brain electric microstates. NeuroImage, 146, 533–543 (2017). DOI: 10.1016/j.neuroimage.2016.10.002.

  26. von Wegner, F., Knaut, P., Laufs, H.: EEG microstate sequences from different clustering algorithms are information-theoreti-cally invariant. Frontiers in Computational Neuroscience, 12–70 (2018). ISSN 1662-5188. DOI: 10.3389/fncom.2018.00070.

  27. Miltz, P., Pascaul-Marqui, R. D., Achermann, P., Kochi K., Faber, P. L.: The EEG microstate topography is predominantly determined by intracortical sources in the alpha band. NeuroImage. 162, 353–361 (2017). DOI: 10.1016/j.neuroimage.
    2017.08.058.

  28. Dinov, M., Leech R.: Modeling uncertainties in EEG micro-states: Analysis of real and imagined motor movements using probabilistic clustering-driven training of probabilistic neural networks. Front Hum. Neurosci, 11–534 (2017). DOI:10.3389/
    fnhum.2017.00534.

  29. Dien, J.: Issues in the application of the average reference: Review, critiques, and recommendations. Behavior Research Methods. Instruments. & Computers, 30(1). 34–43, (1998).

  30. Lei, X., Liao, K.: Understanding the influences of EEG reference: A large-scale brain network perspective. Front Neurosci. 11(205), (2017). DOI: 10.3389/fnins.2017.00205.

  31. Hagemann, D., Naumann, E., Thayer, J. F.: The quest for the EEG reference revisited: A glance from brain asymmetry research. Psychophysiology, 38(5), 847–857, (2001). Cam-bridge University Press. DOI: 10.1111/1469-8986.3850847.

  32. Gao, F., Jia, H., Wu, X., Yu, D., Feng, Y.: Altered resting-state EEG microstate parameters and enhanced spatial complexity in male adolescent patients with mild spastic diplegia. Brain Topography 30(2), 233–244 (2017). ISSN 0896-0267. DOI: 10.1007/s10548-016-0520-4.

Štítky
Biomedicína
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#