#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Haplotype Mapping of a Diploid Non-Meiotic Organism Using Existing and Induced Aneuploidies


Haplotype maps (HapMaps) reveal underlying sequence variation and facilitate the study of recombination and genetic diversity. In general, HapMaps are produced by analysis of Single-Nucleotide Polymorphism (SNP) segregation in large numbers of meiotic progeny. Candida albicans, the most common human fungal pathogen, is an obligate diploid that does not appear to undergo meiosis. Thus, standard methods for haplotype mapping cannot be used. We exploited naturally occurring aneuploid strains to determine the haplotypes of the eight chromosome pairs in the C. albicans laboratory strain SC5314 and in a clinical isolate. Comparison of the maps revealed that the clinical strain had undergone a significant amount of genome rearrangement, consisting primarily of crossover or gene conversion recombination events. SNP map haplotyping revealed that insertion and activation of the UAU1 cassette in essential and non-essential genes can result in whole chromosome aneuploidy. UAU1 is often used to construct homozygous deletions of targeted genes in C. albicans; the exact mechanism (trisomy followed by chromosome loss versus gene conversion) has not been determined. UAU1 insertion into the essential ORC1 gene resulted in a large proportion of trisomic strains, while gene conversion events predominated when UAU1 was inserted into the non-essential LRO1 gene. Therefore, induced aneuploidies can be used to generate HapMaps, which are essential for analyzing genome alterations and mitotic recombination events in this clonal organism.


Vyšlo v časopise: Haplotype Mapping of a Diploid Non-Meiotic Organism Using Existing and Induced Aneuploidies. PLoS Genet 4(1): e1. doi:10.1371/journal.pgen.0040001
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.0040001

Souhrn

Haplotype maps (HapMaps) reveal underlying sequence variation and facilitate the study of recombination and genetic diversity. In general, HapMaps are produced by analysis of Single-Nucleotide Polymorphism (SNP) segregation in large numbers of meiotic progeny. Candida albicans, the most common human fungal pathogen, is an obligate diploid that does not appear to undergo meiosis. Thus, standard methods for haplotype mapping cannot be used. We exploited naturally occurring aneuploid strains to determine the haplotypes of the eight chromosome pairs in the C. albicans laboratory strain SC5314 and in a clinical isolate. Comparison of the maps revealed that the clinical strain had undergone a significant amount of genome rearrangement, consisting primarily of crossover or gene conversion recombination events. SNP map haplotyping revealed that insertion and activation of the UAU1 cassette in essential and non-essential genes can result in whole chromosome aneuploidy. UAU1 is often used to construct homozygous deletions of targeted genes in C. albicans; the exact mechanism (trisomy followed by chromosome loss versus gene conversion) has not been determined. UAU1 insertion into the essential ORC1 gene resulted in a large proportion of trisomic strains, while gene conversion events predominated when UAU1 was inserted into the non-essential LRO1 gene. Therefore, induced aneuploidies can be used to generate HapMaps, which are essential for analyzing genome alterations and mitotic recombination events in this clonal organism.


Zdroje

1. GibbsRA

and 172 co-authors

2003

The International HapMap Project.

Nature

426

789

796

2. GlinskyGV

2006

Integration of HapMap-based SNP pattern analysis and gene expression profiling reveals common SNP profiles for cancer therapy outcome predictor genes.

Cell Cycle

5

2613

2625

3. GuryevVSmitsBMvan de BeltJVerheulMHubnerN

2006

Haplotype block structure is conserved across mammals.

PLoS genetics

2

e121

doi: 10.1371/journal.pgen.0020121

4. SelmeckiAForcheABermanJ

2006

Aneuploidy and isochromosome formation in drug-resistant Candida albicans.

Science

313

367

370

5. JonesTFederspielNAChibanaHDunganJKalmanS

2004

The diploid genome sequence of Candida albicans.

Proc Natl Acad Sci U S A

101

7329

7334

6. HolmesARTsaoSOngSWLampingENiimiK

2006

Heterozygosity and functional allelic variation in the Candida albicans efflux pump genes CDR1 and CDR2.

Mol Microbiol

62

170

186

7. ForcheAMayGMageePT

2005

Demonstration of loss of heterozygosity by single-nucleotide polymorphism microarray analysis and alterations in strain morphology in Candida albicans strains during infection.

Eukaryot Cell

4

156

165

8. ChenXMageeBBDawsonDMageePTKumamotoCA

2004

Chromosome 1 trisomy compromises the virulence of Candida albicans.

Mol Microbiol

51

551

565

9. SelmeckiABergmannSBermanJ

2005

Comparative genome hybridization reveals widespread aneuploidy in Candida albicans laboratory strains.

Mol Microbiol

55

1553

1565

10. WellingtonMKabirMARustchenkoE

2006

5-fluoro-orotic acid induces chromosome alterations in genetically manipulated strains of Candida albicans.

Mycologia

98

393

398

11. JanbonGShermanFRustchenkoE

1998

Monosomy of a specific chromosome determines L-sorbose utilization: a novel regulatory mechanism in Candida albicans.

Proc Natl Acad Sci U S A

95

5150

5155

12. WuWPujolCLockhartSRSollDR

2005

Chromosome loss followed by duplication is the major mechanism of spontaneous mating-type locus homozygosis in Candida albicans.

Genetics

169

1311

1327

13. PerepnikhatkaVFischerFJNiimiMBakerRACannonRD

1999

Specific chromosome alterations in fluconazole-resistant mutants of Candida albicans.

J Bacteriol

181

4041

4049

14. RustchenkoE

2007

Chromosome instability in Candida albicans.

FEMS Yeast Res

7

2

11

15. EnloeBDiamondAMitchellAP

2000

A single-transformation gene function test in diploid Candida albicans.

J Bacteriol

182

5730

5736

16. CowenLESirjusinghCSummerbellRCWalmsleySRichardsonS

1999

Multilocus genotypes and DNA fingerprints do not predict variation in azole resistance among clinical isolates of Candida albicans.

Antimicrob Agents Chemother

43

2930

2938

17. CowenLESanglardDCalabreseDSirjusinghCAndersonJB

2000

Evolution of drug resistance in experimental populations of Candida albicans.

J Bacteriol

182

1515

1522

18. NobleSMJohnsonAD

2005

Strains and strategies for large-scale gene deletion studies of the diploid human fungal pathogen Candida albicans.

Eukaryot Cell

4

298

309

19. WilsonRBDavisDMitchellAP

1999

Rapid hypothesis testing with Candida albicans through gene disruption with short homology regions.

J Bacteriol

181

1868

1874

20. ForcheAMageePTMageeBBMayG

2004

Genome-wide single-nucleotide polymorphism map for Candida albicans.

Eukaryot Cell

3

705

714

21. ChibanaHBeckermanJLMageePT

2000

Fine-resolution physical mapping of genomic diversity in Candida albicans.

Genome Res

10

1865

1877

22. LegrandMLephartPForcheAMuellerFMWalshT

2004

Homozygosity at the MTL locus in clinical strains of Candida albicans: karyotypic rearrangements and tetraploid formation.

Mol Microbiol

52

1451

1462

23. LockhartSRPujolCDanielsKJMillerMGJohnsonAD

2002

In Candida albicans, white-opaque switchers are homozygous for mating type.

Genetics

162

737

745

24. WuWLockhartSRPujolCSrikanthaTSollDR

2007

Heterozygosity of genes on the sex chromosome regulates Candida albicans virulence.

Mol Microbiol

64

1587

1604

Štítky
Genetika Reprodukčná medicína
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#