#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Missense Mutation in Exon 2 of SLC36A1 Responsible for Champagne Dilution in Horses


Champagne coat color in horses is controlled by a single, autosomal-dominant gene (CH). The phenotype produced by this gene is valued by many horse breeders, but can be difficult to distinguish from the effect produced by the Cream coat color dilution gene (CR). Three sires and their families segregating for CH were tested by genome scanning with microsatellite markers. The CH gene was mapped within a 6 cM region on horse chromosome 14 (LOD = 11.74 for θ = 0.00). Four candidate genes were identified within the region, namely SPARC [Secreted protein, acidic, cysteine-rich (osteonectin)], SLC36A1 (Solute Carrier 36 family A1), SLC36A2 (Solute Carrier 36 family A2), and SLC36A3 (Solute Carrier 36 family A3). SLC36A3 was not expressed in skin tissue and therefore not considered further. The other three genes were sequenced in homozygotes for CH and homozygotes for the absence of the dilution allele (ch). SLC36A1 had a nucleotide substitution in exon 2 for horses with the champagne phenotype, which resulted in a transition from a threonine amino acid to an arginine amino acid (T63R). The association of the single nucleotide polymorphism (SNP) with the champagne dilution phenotype was complete, as determined by the presence of the nucleotide variant among all 85 horses with the champagne dilution phenotype and its absence among all 97 horses without the champagne phenotype. This is the first description of a phenotype associated with the SLC36A1 gene.


Vyšlo v časopise: Missense Mutation in Exon 2 of SLC36A1 Responsible for Champagne Dilution in Horses. PLoS Genet 4(9): e32767. doi:10.1371/journal.pgen.1000195
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1000195

Souhrn

Champagne coat color in horses is controlled by a single, autosomal-dominant gene (CH). The phenotype produced by this gene is valued by many horse breeders, but can be difficult to distinguish from the effect produced by the Cream coat color dilution gene (CR). Three sires and their families segregating for CH were tested by genome scanning with microsatellite markers. The CH gene was mapped within a 6 cM region on horse chromosome 14 (LOD = 11.74 for θ = 0.00). Four candidate genes were identified within the region, namely SPARC [Secreted protein, acidic, cysteine-rich (osteonectin)], SLC36A1 (Solute Carrier 36 family A1), SLC36A2 (Solute Carrier 36 family A2), and SLC36A3 (Solute Carrier 36 family A3). SLC36A3 was not expressed in skin tissue and therefore not considered further. The other three genes were sequenced in homozygotes for CH and homozygotes for the absence of the dilution allele (ch). SLC36A1 had a nucleotide substitution in exon 2 for horses with the champagne phenotype, which resulted in a transition from a threonine amino acid to an arginine amino acid (T63R). The association of the single nucleotide polymorphism (SNP) with the champagne dilution phenotype was complete, as determined by the presence of the nucleotide variant among all 85 horses with the champagne dilution phenotype and its absence among all 97 horses without the champagne phenotype. This is the first description of a phenotype associated with the SLC36A1 gene.


Zdroje

1. MariatD

TaouritS

GuerinG

2002 A Mutation in the MATP gene causes the cream coat colour in the horse. Genet Sel Evol 35(1) 119 133

2. BrunbergE

AnderssonS

CothranG

SandbergK

MikkoS

2006 A missense mutation in PMEL17 is associated with the Silver coat color in the horse. BMC Genet doi: 10.1186/1471-2156-7-46

3. LockeM

RuthLS

MillonLV

PenedoMCT

MurrayJD

2001 The cream dilution gene, responsible for the palomino and buckskin coat colours, maps to horse chromosome 21. Anim Genet 32 340 343

4. AdalsteinssonS

1974 Inheritance of the palomino color in Icelandic horses. J Hered 65 15 20

5. BowlingA

2000 Genetics of Color variation.

BowlingAT

RuvinskyA

New York CABI Publishing 62 In the Genetics of the Horse Edited by:

6. SponenbergD

2003 Equine Color Genetics. 2nd Edition Ames, IA Iowa State University Press 46 49

7. SheridanCM

MageeRM

HiscottPS

HaganS

WongDH

McGalliardJN

Grierson

2002 The role of matricellular proteins thrombospondin-1 and osteonectin during RPE cell migration in proliferative vitreoretinopathy. Curr Eye Res 25(5) 279 85

8. BerminghamJ

PenningtonJ

2004 Organization and expression of the SLC36 cluster of amino acid transporter genes. Mamm Genome DOI:10.1007/s00335-003-2319-3

9. BollM

FoltzM

Rubio-AliagaI

DanielH

2003 A cluster of proton/amino acid transporter genes in the human and mouse genomes. Genomics 82 47 56

10. PenedoMCT

MillonLV

BernocoD

BaileyE

BinnsM

2005 International Equine Gene Mapping Workshop Report: A comprehensive linkage map constructed with data from new markers and by merging four mapping resources. Cytogenet and Genome Res 111 5 15

11. KentWJ

SugnetCW

FureyTS

RoskinKM

PringleTH

2002 The Human Genome Browser at UCSC. Genome Res 12(6) 996 1006

12. GrafJ

HodgsonR

van DaalA

2005 Single nucleotide polymorphisms in the MATP gene are associated with normal human pigmentation variation. Hum Mutat 25(3) 278 84 2005 Mar;

13. LamasonRL

MohideenMA

MestJR

WongAC

NortonHL

2005 SLC24A5, a putative cation exchanger, affects pigmentation in zebrafish and humans. Science 310 1782 1786

14. HoekstraHE

2006 Genetice, development and evolution of adaptive pigmentation in vertebrates. Heredity 97 222 234

15. ChenZ

FeiYJ

AndersonCM

WakeKA

MiyauchiS

2003 Structure, function and immunolocalization of a proton-coupled amino acid transporter (hPAT1) in the human intestinal cell line Caco-2. J Physiol 15;546(Pt 2) 349 61

16. WredenCC

JohnsonJ

TranC

SealRP

CopenhagenDR

2003 The H+-coupled electrogenic lysosomal amino acid transporter LYAAT1 localizes to the axon and plasma membrane of hippocampal neurons. J Neurosci 15;23(4) 1265 75

17. KushimotoT

BasrurV

ValenciaJ

MatsunagaJ

VieiraW

2001 A model for melanosome biogenesis based on the purification and analysis of early melanosomes. Proc Natl Acad Sci Vol. 98 no. 19 10698 10703

18. WatabeH

ValenciaJC

YasumotoK

KushimotoT

AndoH

2003 Regulation of Tyrosinase Processing and Trafficking by Organellar pH and by Proteasome Activity. J Biol Chem 279 7971 7981

19. WatabeH

ValenciaJC

LePapeE

YamaguchiY

NakamuraM

2008 Involvement of Dynein and Spectrin with Early Melanosome Transport and Melanosomal Protein Trafficking. J Invest Dermatol DOI: 10.1038/sj.jid.5701019

20. GuérinG

BaileyE

BernocoD

AndersonI

AntczakDF

1999 Report of the international equine gene mapping workshop: male linkage map. Anim Genet 30 341 54

21. TozakiT

MashimaS

HirotaK

MiuraN

Choi-MiuraNH

TomitaM

2001 Characterization of equine microsatellites and microsatellite-linked repetitive elements (eMLREs) by efficient cloning and genotyping methods. DNA Res 8(1) 33 45

22. RozenS

SkaletskyHJ

1998 Primer3. Code available at http://www-genome.wi.mit.edu/genome_software/other/primer3.html. Accessed at: http://biotools.umassmed.edu/bioapps/primer3_www.cgi

23. MortonNE

1956 Sequential tests for the detection of linkage. Amer. J. Hum. Genet 7 277 318

Štítky
Genetika Reprodukčná medicína
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#