A Microhomology-Mediated Break-Induced Replication Model for the Origin of Human Copy Number Variation
Chromosome structural changes with nonrecurrent endpoints associated with genomic disorders offer windows into the mechanism of origin of copy number variation (CNV). A recent report of nonrecurrent duplications associated with Pelizaeus-Merzbacher disease identified three distinctive characteristics. First, the majority of events can be seen to be complex, showing discontinuous duplications mixed with deletions, inverted duplications, and triplications. Second, junctions at endpoints show microhomology of 2–5 base pairs (bp). Third, endpoints occur near pre-existing low copy repeats (LCRs). Using these observations and evidence from DNA repair in other organisms, we derive a model of microhomology-mediated break-induced replication (MMBIR) for the origin of CNV and, ultimately, of LCRs. We propose that breakage of replication forks in stressed cells that are deficient in homologous recombination induces an aberrant repair process with features of break-induced replication (BIR). Under these circumstances, single-strand 3′ tails from broken replication forks will anneal with microhomology on any single-stranded DNA nearby, priming low-processivity polymerization with multiple template switches generating complex rearrangements, and eventual re-establishment of processive replication.
Vyšlo v časopise:
A Microhomology-Mediated Break-Induced Replication Model for the Origin of Human Copy Number Variation. PLoS Genet 5(1): e32767. doi:10.1371/journal.pgen.1000327
Kategorie:
Review
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1000327
Souhrn
Chromosome structural changes with nonrecurrent endpoints associated with genomic disorders offer windows into the mechanism of origin of copy number variation (CNV). A recent report of nonrecurrent duplications associated with Pelizaeus-Merzbacher disease identified three distinctive characteristics. First, the majority of events can be seen to be complex, showing discontinuous duplications mixed with deletions, inverted duplications, and triplications. Second, junctions at endpoints show microhomology of 2–5 base pairs (bp). Third, endpoints occur near pre-existing low copy repeats (LCRs). Using these observations and evidence from DNA repair in other organisms, we derive a model of microhomology-mediated break-induced replication (MMBIR) for the origin of CNV and, ultimately, of LCRs. We propose that breakage of replication forks in stressed cells that are deficient in homologous recombination induces an aberrant repair process with features of break-induced replication (BIR). Under these circumstances, single-strand 3′ tails from broken replication forks will anneal with microhomology on any single-stranded DNA nearby, priming low-processivity polymerization with multiple template switches generating complex rearrangements, and eventual re-establishment of processive replication.
Zdroje
1. IafrateAJ
FeukL
RiveraMN
ListewnikML
DonahoePK
2004 Detection of large-scale variation in the human genome. Nat Genet 36 949 951
2. KorbelJO
UrbanAE
AffourtitJP
GodwinB
GrubertF
2007 Paired-end mapping reveals extensive structural variation in the human genome. Science 318 420 426
3. SebatJ
LakshmiB
TrogeJ
AlexanderJ
YoungJ
2004 Large-scale copy number polymorphism in the human genome. Science 305 525 528
4. RedonR
IshikawaS
FitchKR
FeukL
PerryGH
2006 Global variation in copy number in the human genome. Nature 444 444 454
5. WongKK
deLeeuwRJ
DosanjhNS
KimmLR
ChengZ
2007 A comprehensive analysis of common copy-number variations in the human genome. Am J Hum Genet 80 91 104
6. KhajaR
ZhangJ
MacDonaldJR
HeY
Joseph-GeorgeAM
2006 Genome assembly comparison identifies structural variants in the human genome. Nat Genet 38 1413 1418
7. NewmanTL
TuzunE
MorrisonVA
HaydenKE
VenturaM
2005 A genome-wide survey of structural variation between human and chimpanzee. Genome Res 15 1344 1356
8. FieglerH
RedonR
AndrewsD
ScottC
AndrewsR
2006 Accurate and reliable high-throughput detection of copy number variation in the human genome. Genome Res 16 1566 1574
9. KomuraD
ShenF
IshikawaS
FitchKR
ChenW
2006 Genome-wide detection of human copy number variations using high-density DNA oligonucleotide arrays. Genome Res 16 1575 1584
10. LupskiJR
2007 Structural variation in the human genome. N Engl J Med 356 1169 1171
11. TuzunE
SharpAJ
BaileyJA
KaulR
MorrisonVA
2005 Fine-scale structural variation of the human genome. Nat Genet 37 727 732
12. BruderCEG
PoitrowskiA
GijsbersAACJ
AnderssonR
EricksonS
2008 Phenotypically concordant and discordant monozygotic twins display different DNA copy-number-variation profiles. Am J Hum Genet 82 1 9
13. DumasL
KimYH
Karimpour-FardA
CoxM
HopkinsJ
2007 Gene copy number variation spanning 60 million years of human and primate evolution. Genome Res 17 1266 1277
14. NahonJL
2003 Birth of ‘human-specific’ genes during primate evolution. Genetica 118 193 208
15. BaileyJA
EichlerEE
2006 Primate segmental duplications: crucibles of evolution, diversity and disease. Nat Rev Genet 7 552 564
16. StankiewiczP
ShawCJ
WithersM
InoueK
LupskiJR
2004 Serial segmental duplications during primate evolution result in complex human genome architecture. Genome Res 14 2209 2220
17. LupskiJR
1998 Genomic disorders: structural features of the genome can lead to DNA rearrangement and human disease traits. Trends Genet 14 417 422
18. StankiewiczP
LupskiJR
2002 Genome architecture, rearrangements and genomic disorders. Trends Genet 18 74 82
19. ShawCJ
LupskiJR
2005 Non-recurrent 17p11.2 deletions are generated by homologous and non-homologous mechanisms. Hum Genet 116 1 7
20. LupskiJR
StankiewiczP
2005 Genomic disorders: molecular mechanisms for rearrangements and conveyed phenotypes. PLoS Genet 1 e49 doi:10.1371/journal.pgen.0010049
21. LupskiJR
2006 Genome structural variation and sporadic disease traits. Nat Genet 38 974 976
22. LeeJA
CarvalhoCM
LupskiJR
2007 A DNA replication mechanism for generating nonrecurrent rearrangements associated with genomic disorders. Cell 131 1235 1247
23. NobileCT
RizziL
SimionatiF
NigroB
CardazzoV
PatarnelloB
ValleT
DanieliG, GA
2002 Analysis of 22 deletion breakpoints in dystrophin intron 49. Hum Genet 110 418 421
24. InoueK
OsakaH
ThurstonVC
ClarkeJT
YoneyamaA
2002 Genomic rearrangements resulting in PLP1 deletion occur by nonhomologous end joining and cause different dysmyelinating phenotypes in males and females. Am J Hum Genet 71 838 853
25. LeeJA
2006 Molecular analysis of the non-recurrent genomic duplications causing Pelizaeus-Merzbacher disease and its allelic disorder paraplegia type 2. 371 [PhD thesis] Houston (Texas): Department of Molecular and Human Genetics, Baylor College of Medicine
26. PotockiLB, W
Treadwell-DeeringD
CarvalhoCM
EifertA
FriedmanEM
2007 Characterization of Potocki-Lupski syndrome (dup(17)(p11.2p11.2)) and delineation of a dosage-sensitive critical interval that can convey an autism phenotype. Am J Hum Genet 80 633 649
27. VissersLE
StankiewiczP
YatsenkoSA
CrawfordE
CreswickH
2007 Complex chromosome 17p rearrangements associated with low-copy repeats in two patients with congenital anomalies. Hum Genet 121 697 709
28. ChenJM
ChuzhanovaN
StensonPD
FérecC
CooperDN
2005 Intrachromosomal serial replication slippage in trans gives rise to diverse genomic rearrangements involving inversions. Hum Mutat 26 362 373
29. FérecC
CasalsT
ChuzhanovaN
MacekMJ
BienvenuT
2006 Gross genomic rearrangements involving deletions in the CFTR gene: characterization of six new events from a large cohort of hitherto unidentified cystic fibrosis chromosomes and meta-analysis of the underlying mechanisms. Eur J Hum Genet 14 562 567
30. del GaudioD
FangP
ScagliaF
WardPA
CraigenWJ
2006 Increased MECP2 gene copy number as the result of genomic duplication in neurodevelopmentally delayed males. Genet Med 8 784 792
31. SheenCR
JewellUR
MorrisCM
BrennanSO
FérecC
2007 Double complex mutations involving F8 and FUNDC2 caused by distinct break-induced replication. Hum Mutat 28 1198 2006
32. StankiewiczP
ShawCJ
DapperJD
WakuiK
ShafferLG
2003 Genome architecture catalyzes nonrecurrent chromosomal rearrangements. Am J Hum Genet 72 1101 1116
33. LeeJA
InoueK
CheungSW
ShawCA
StankiewiczP
2006 Role of genomic architecture in PLP1 duplication causing Pelizaeus-Merzbacher disease. Hum Mol Genet 15 2250 2265
34. LeeJA
MadridRE
SperleK
RittersonCM
HobsonGM
2006 Spastic paraplegia type 2 associated with axonal neuropathy and apparent PLP1 position effect. Ann Neurol 59 398 403
35. SlackA
ThorntonPC
MagnerDB
RosenbergSM
HastingsPJ
2006 On the mechanism of gene amplification induced under stress in Escherichia coli. PLoS Genet 2 e48 doi:10.1371/journal.pgen.0020048
36. VolikS
RaphaelBJ
HuangG
StrattonMR
BignelG
2006 Decoding the fine-scale structure of a breast cancer genome and transcriptome. Genome Res 16 394 404
37. BignellGR
SantariusT
PoleJC
ButlerAP
PerryJ
2007 Architectures of somatic genomic rearrangement in human cancer amplicons at sequence-level resolution. Genome Res 17 1296 1303
38. CanningS
DryjaTP
1989 Short, direct repeats at the breakpoints of deletions of the retinoblastoma gene. Proc Natl Acad Sci U S A 86 5044 5048
39. KohnoT
YokataJ
2006 Molecular processes of chromosome 9p21 deletions causing inactivation of the p16 tumor suppressor gene in human cancer: deduction from structural analysis of breakpoints for deletions. DNA Repair (Amst) 5 1273 1281
40. ZhangY
Zeleznik-LeN
EmmanuelN
JayathilakaN
ChenJ
2004 Characterization of genomic breakpoints in MLL and CBP in leukemia patients with t(11;16). Genes Chromosomes Cancer 41 257 265
41. ZhangY
StrisselP
StrickR
ChenJ
NuciforaG
2004 Genomic DNA breakpoints in AML1/RUNX1 and ETO cluster with topoisomerase II DNA cleavage and DNase I hypersensitive sites in t(8;21) leukemia. Proc Natl Acad Sci U S A 99 3070 3075
42. ChenC
UmezuK
KolodnerRD
1998 Chromosomal rearrangements occur in S. cerevisiae rfa1 mutator mutants due to mutagenic lesions processed by double-strand-break repair. Mol Cell 2 9 22
43. CairnsJ
FosterPL
1991 Adaptive reversion of a frameshift mutation in Escherichia coli. Genetics 128 695 701
44. HastingsPJ
BullHJ
KlumpJR
RosenbergSM
2000 Adaptive amplification: an inducible chromosomal instability mechanism. Cell 103 723 731
45. HastingsPJ
SlackA
PetrosinoJF
RosenbergSM
2004 Adaptive amplification and point mutation are independent mechanisms: Evidence for various stress-inducible mutation mechanisms. PLoS Biol 2 e399 doi:10.1371/journal.pbio.0020399
46. KugelbergE
KofoidE
ReamsAB
AnderssonDI
RothJR
2006 Multiple pathways of selected gene amplification during adaptive mutation. Proc Natl Acad Sci U S A 103 17319 17324
47. HastingsPJ
2007 Adaptive amplification. Critical Rev Biochem Mol Biol 42 1 13
48. FriedbergEC
WalkerGC
SiedeW
WoodRD
SchultzRA
2005 DNA Repair and Mutagenesis Washington (DC) ASM Press 1164
49. IkedaH
ShimizuH
UkitaT
KumagaiM
1995 A novel assay for illegitimate recombination in Escherichia coli: stimulation of lambda bio transducing phage formation by ultra-violet light and its independence from RecA function. Adv Biophys 31 197 208
50. AlbertiniAM
HoferM
CalosMP
MillerJH
1982 On the formation of spontaneous deletions: the importance of short sequence homologies in the generation of large deletions. Cell 29 319 328
51. FarabaughPJ
SchmeissnerU
HoferM
MillerJH
1978 Genetic studies of the lac repressor. VII. On the molecular nature of spontaneous hotspots in the lacI gene of Escherichia coli. J Mol Biol 126 847 857
52. ShimizuH
YamaguchiH
AshizawaY
KohnoY
AsamiM
1997 Short-homology-independent illegitimate recombination in Escherichia coli: distinct mechanism from short-homology-dependent illegitimate recombination. J Mol Biol 266 297 305
53. BzymekM
LovettST
2001 Instability of repetitive DNA sequences: the role of replication in multiple mechanisms. Proc Natl Acad Sci U S A 98 8319 8325
54. PonderRG
FonvilleNC
RosenbergSM
2005 A switch from high-fidelity to error-prone DNA double-strand break repair underlies stress-induced mutation. Mol Cell 19 791 804
55. PayenC
KoszulR
DujonB
FischerG
2008 Segmental duplications arise from Pol32-dependent repair of broken forks through two alternative replication-based mechanisms. PLoS Genet 4 e1000175 doi:10.1371/journal.pgen.1000175
56. BranzeiD
FoianiM
2007 Template Switching: From Replication Fork Repair to Genome Rearrangements. Cell 131 1228 1230
57. MerrihewRV
MarburgerK
PenningtonSL
RothDB
WilsonJH
1996 High-frequency illegitimate integration of transfected DNA at preintegrated target sites in a mammalian genome. Mol Cell Biol 16 10 18
58. MorrowDM
ConnellyC
HieterP
1997 “Break-copy” duplication: a model for chromosome fragment formation in Saccharomyces cerevisiae. Genetics 147 371 382
59. McEachernMJ
HaberJE
2006 Break-Induced Replication and Recombinational Telomere Elongation in Yeast. Annu Rev Biochem 75 111 135
60. SmithCE
LlorenteB
SymingtonLS
2007 Template switching during break-induced replication. Nature 447 102 105
61. LydeardJR
JainS
YamaguchiM
HaberJE
2007 Break-induced replication and telomerase-independent telomere maintenance require Pol32. Nature 448 820 823
62. MotamediM
SzigetySK
RosenbergSM
1999 Double-strand-break repair in Escherichia coli: physical evidence for a DNA replication mechanism in vivo. Genes Dev 13 2889 2903
63. LlorenteB
SmithCE
SymingtonLS
2008 Break-induced replication: what is it and what is it for? Cell Cycle 7 859 864
64. HeiterP
MannC
SnyderM
DavisRW
1985 Mitotic stability of yeast chromosomes: A colony color assay that measures nondisjunction and chromosome loss. Cell 40 381 392
65. DeemA
BarkerK
VanhulleK
DowningB
VaylA
2008 Defective break-induced replication leads to half-crossovers in Saccharomyces cerevisiae. Genetics 179 1845 1860
66. SchmidtKH
WuJ
KolodnerRD
2006 Control of translocations between highly diverged genes by Sgs1, the Saccharomyces cerevisiae homolog of the Bloom's syndrome protein. Mol Cell Biol 26 5406 5420
67. BautersM
Van EschH
FriezMJ
Boespflug-TanguyO
ZenkerM
2008 Nonrecurrent MECP2 duplications mediated by genomic architecture-driven DNA breaks and break-induced replication repair. Genome Res 18 847 858
68. LovettST
HurleyRL
SuteraVAJr
AubuchonRH
LebedevaMA
2002 Crossing over between regions of limited homology in Escherichia coli. RecA-dependent and RecA-independent pathways. Genetics 160 851 859
69. LiskayRM
LetsouA
StachelekJL
1987 Homology requirement for efficient gene conversion between duplicated chromosomal sequences in mammalian cells. Genetics 115 161 167
70. ReiterLT
HastingsPJ
NelisE
De JongheP
Van BroeckhovenC
1998 Human meiotic recombination products revealed by sequencing a hotspot for homologous strand exchange in multiple HNPP deletion patients. Am J Hum Genet 62 1023 1033
71. VanHulleK
LemoineFJ
NarayananV
DowningB
HullK
2007 Inverted DNA repeats channel repair of distant double-strand breaks into chromatid fusions and chromosomal rearrangements. Mol Cell Biol 27 2601 2614
72. DavisAP
SymingtonLS
2004 RAD51-dependent break-induced replication in yeast. Mol Cell Biol 24 2344 2351
73. LeS
MooreJK
HaberJE
GreiderCW
1999 RAD50 and RAD51 define two pathways that collaborate to maintain telomeres in the absence of telomerase. Genetics 152 143 152
74. TengSC
ZakianVA
1999 Telomere-telomere recombination is an efficient bypass pathway for telomere maintenance in Saccharomyces cerevisiae. Mol Cell Biol 19 8083 8093
75. BentleyJ
DiggleCP
HarndenP
KnowlesMA
KiltieAE
2004 DNA double strand break repair in human bladder cancer is error prone and involves microhomology-associated end-joining. Nucleic Acids Res 32 5249 5259
76. CorneoB
WendlandRL
DerianoL
CuiX
KleinIA
2007 Rag mutations reveal robust alternative end joining. Nature 449 483 486
77. LisbyM
BarlowJH
BurgessRC
RothsteinR
2004 Choreography of the DNA damage response: spatiotemporal relationships among checkpoint and repair proteins. Cell 118 699 713
78. PenningtonJM
RosenbergSM
2007 Spontaneous DNA breakage in single living cells of Escherichia coli. Nat Gen 39 797 802
79. Saleh-GohariN
BryantHE
SchultzN
ParkerKM
CasselTN
2005 Spontaneous homologous recombination is induced by collapsed replication forks that are caused by endogenous DNA single-strand breaks. Mol Cell Biol 25 7158 7169
80. McIlwraithMJ
VaismanA
LiuY
FanningE
WoodgateR
2005 Human DNA polymerase eta promotes DNA synthesis from strand invasion intermediates of homologous recombination. Mol Cell 20 783 792
81. KawamotoT
ArakiK
SonodaE
YamashitaYM
HaradaK
2005 Dual roles for DNA polymerase eta in homologous DNA recombination and translesion DNA synthesis. Mol Cell 20 793 799
82. CannistraroVJ
TaylorJS
2007 Ability of polymerase eta and T7 DNA polymerase to bypass bulge structures. J Biol Chem 282 11188 11196
83. RothDB
ChangXB
WilsonJH
1989 Comparison of filler DNA at immune, nonimmune, and oncogenic rearrangements suggests multiple mechanisms of formation. Mol Cell Biol 9 3049 3057
84. YoungSD
MarshallRS
HillRP
1988 Hypoxia induces DNA overreplication and enhances metastatic potential of murine tumor cells. Proc Natl Acad Sci U S A 85 9533 9537
85. CoquelleA
ToledoF
SternS
BiethA
DebatisseM
1998 A new role for hypoxia in tumor progression: induction of fragile site triggering genomic rearrangements and formation of complex DMs and HSRs. Mol Cell 2 259 265
86. SubarskyP
HillRP
2003 The hypoxic tumour microenvironment and metastatic progression. Clin Exp Metastasis 20 237 250
87. BindraRSS
ChafferPJ
MengA
WooJ
MåseideK
2004 Down-regulation of Rad51 and decreased homologous recombination in hypoxic cancer cells. Mol Cell Biol 24 8504 8518
88. BindraRS
GlazerPM
2007 Repression of RAD51 gene expression by E2F4/p130 complexes in hypoxia. Oncogene 26 2048 2057
89. HuangLE
BindraRS
GlazerPM
HarrisAL
2007 Hypoxia-induced genetic instability–a calculated mechanism underlying tumor progression. J Mol Med 85 139 148
90. BindraRS
CrosbyME
GlazerPM
2007 Regulation of DNA repair in hypoxic cancer cells. Cancer Metastasis Rev 26 249 260
91. McVeyM
AdamsM
Staeva-VieiraE
SekelskyJJ
2004 Evidence for multiple cycles of strand invasion during repair of double-strand gaps in Drosophila. Genetics 167 699 705
92. BindraRS
GlazerPM
2007 Co-repression of mismatch repair gene expression by hypoxia in cancer cells: role of the Myc/Max network. Cancer Lett 252 93 103
93. MihaylovaVT
BindraRS
YuanJ
CampisiD
NarayananL
2003 Decreased expression of the DNA mismatch repair gene Mlh1 under hypoxic stress in mammalian cells. Mol Cell Biol 23 3265 3273
94. MyungK
ChenC
KolodnerRD
2001 Multiple pathways cooperate in the suppression of genome instability in Saccharomyces cerevisiae. Nature 411 1073 1076
95. LombardoM-J
AponyiI
RosenbergSM
2004 General stress response regulator RpoS in adaptive mutation and amplification in Escherichia coli. Genetics 166 669 680
96. Fishman-LobellJ
HaberJE
1992 Removal of nonhomologous DNA ends in double-strand break recombination: the role of the yeast ultraviolet repair gene RAD1. Science 258 480 484
97. MortensenUH
BendixenHC
SunjevaricI
RothsteinR
1996 DNA strand annealing is promoted by yeast Rad52 protein. Proc Natl Acad Sci U S A 93 10729 10734
98. TsukamotoY
KatoJ
IkedaH
1996 Effects of mutations of RAD50, RAD51, RAD52, and related genes on illegitimate recombination in Saccharomyces cerevisiae. Genetics 142 383 391
99. WuY
KantakeN
SugiyamaT
KowalczykowskiSC
2008 Rad51 protein controls Rad52-mediated DNA annealing. J Biol Chem 283 14883 14892
100. LeeK
LeeSE
2007 Saccharomyces cerevisiae Sae2- and Tel1-dependent single-strand DNA formation at DNA break promotes microhomology-mediated end joining. Genetics 176 2003 2014
101. LupskiJR
2007 An evolution revolution provides further revelation. Bioessays 29 1182 1184
102. OhnoS
1970 Evolution by gene duplication Berlin, New York Springer-Verlag 160
103. HurlesM
2004 Gene duplication: the genomic trade in spare parts. PLoS Biol 2 e206 doi:10.1371/journal.pbio.0020206
104. HittingerCT
CarrollSB
2007 Gene duplication and the adaptive evolution of a classic genetic switch. Nature 449 677 681
105. SpenceJE
PerciaccanteRG
GreigGM
WillardHF
LedbetterDH
1988 Uniparental disomy as a mechanism for human genetic disease. Am J Hum Genet 42 217 226
106. LeeJA
LupskiJR
2006 Genomic rearrangements and gene copy-number alterations as a cause of nervous system disorders. Neuron 52 103 121
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2009 Číslo 1
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- A -Acting Diversification Activator Both Necessary and Sufficient for AID-Mediated Hypermutation
- Order and Disorder during Divergence
- Mouse Genome-Wide Association Mapping Needs Linkage Analysis to Avoid False-Positive Loci
- Why Is the Correlation between Gene Importance and Gene Evolutionary Rate So Weak?