Capture of MicroRNA–Bound mRNAs Identifies the Tumor Suppressor miR-34a as a Regulator of Growth Factor Signaling
A simple biochemical method to isolate mRNAs pulled down with a transfected, biotinylated microRNA was used to identify direct target genes of miR-34a, a tumor suppressor gene. The method reidentified most of the known miR-34a regulated genes expressed in K562 and HCT116 cancer cell lines. Transcripts for 982 genes were enriched in the pull-down with miR-34a in both cell lines. Despite this large number, validation experiments suggested that ∼90% of the genes identified in both cell lines can be directly regulated by miR-34a. Thus miR-34a is capable of regulating hundreds of genes. The transcripts pulled down with miR-34a were highly enriched for their roles in growth factor signaling and cell cycle progression. These genes form a dense network of interacting gene products that regulate multiple signal transduction pathways that orchestrate the proliferative response to external growth stimuli. Multiple candidate miR-34a–regulated genes participate in RAS-RAF-MAPK signaling. Ectopic miR-34a expression reduced basal ERK and AKT phosphorylation and enhanced sensitivity to serum growth factor withdrawal, while cells genetically deficient in miR-34a were less sensitive. Fourteen new direct targets of miR-34a were experimentally validated, including genes that participate in growth factor signaling (ARAF and PIK3R2) as well as genes that regulate cell cycle progression at various phases of the cell cycle (cyclins D3 and G2, MCM2 and MCM5, PLK1 and SMAD4). Thus miR-34a tempers the proliferative and pro-survival effect of growth factor stimulation by interfering with growth factor signal transduction and downstream pathways required for cell division.
Vyšlo v časopise:
Capture of MicroRNA–Bound mRNAs Identifies the Tumor Suppressor miR-34a as a Regulator of Growth Factor Signaling. PLoS Genet 7(11): e32767. doi:10.1371/journal.pgen.1002363
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1002363
Souhrn
A simple biochemical method to isolate mRNAs pulled down with a transfected, biotinylated microRNA was used to identify direct target genes of miR-34a, a tumor suppressor gene. The method reidentified most of the known miR-34a regulated genes expressed in K562 and HCT116 cancer cell lines. Transcripts for 982 genes were enriched in the pull-down with miR-34a in both cell lines. Despite this large number, validation experiments suggested that ∼90% of the genes identified in both cell lines can be directly regulated by miR-34a. Thus miR-34a is capable of regulating hundreds of genes. The transcripts pulled down with miR-34a were highly enriched for their roles in growth factor signaling and cell cycle progression. These genes form a dense network of interacting gene products that regulate multiple signal transduction pathways that orchestrate the proliferative response to external growth stimuli. Multiple candidate miR-34a–regulated genes participate in RAS-RAF-MAPK signaling. Ectopic miR-34a expression reduced basal ERK and AKT phosphorylation and enhanced sensitivity to serum growth factor withdrawal, while cells genetically deficient in miR-34a were less sensitive. Fourteen new direct targets of miR-34a were experimentally validated, including genes that participate in growth factor signaling (ARAF and PIK3R2) as well as genes that regulate cell cycle progression at various phases of the cell cycle (cyclins D3 and G2, MCM2 and MCM5, PLK1 and SMAD4). Thus miR-34a tempers the proliferative and pro-survival effect of growth factor stimulation by interfering with growth factor signal transduction and downstream pathways required for cell division.
Zdroje
1. GarzonRCalinGACroceCM 2009 MicroRNAs in Cancer. Annu Rev Med 60 167 179 doi:10.1146/annurev.med.59.053006.104707
2. HeLHeXLoweSWHannonGJ 2007 microRNAs join the p53 network [mdash] another piece in the tumour-suppression puzzle. Nat Rev Cancer 7 819 822 doi:10.1038/nrc2232
3. SunFFuHLiuQTieYZhuJ 2008 Downregulation of CCND1 and CDK6 by miR-34a induces cell cycle arrest. FEBS Letters 582 1564 1568 doi:10.1016/j.febslet.2008.03.057
4. TazawaHTsuchiyaNIzumiyaMNakagamaH 2007 Tumor-suppressive miR-34a induces senescence-like growth arrest through modulation of the E2F pathway in human colon cancer cells. Proceedings of the National Academy of Sciences 104 15472 15477 doi:10.1073/pnas.0707351104
5. YamakuchiMFerlitoMLowensteinCJ 2008 miR-34a repression of SIRT1 regulates apoptosis. Proceedings of the National Academy of Sciences 105 13421 13426 doi:10.1073/pnas.0801613105
6. Raver-ShapiraNMarcianoEMeiriESpectorYRosenfeldN 2007 Transcriptional Activation of miR-34a Contributes to p53-Mediated Apoptosis. Molecular Cell 26 731 743 doi:10.1016/j.molcel.2007.05.017
7. ChangT-CWentzelEAKentOARamachandranKMullendoreM 2007 Transactivation of miR-34a by p53 Broadly Influences Gene Expression and Promotes Apoptosis. Molecular Cell 26 745 752 doi:10.1016/j.molcel.2007.05.010
8. HeLHeXLimLPde StanchinaEXuanZ 2007 A microRNA component of the p53 tumour suppressor network. Nature 447 1130 1134 doi:10.1038/nature05939
9. NavarroFGutmanDMeireECaceresMRigoutsosI 2009 miR-34a contributes to megakaryocytic differentiation of K562 cells independently of p53. Blood 114 2181 2192 doi:10.1182/blood-2009-02-205062
10. ChristoffersenNRShalgiRFrankelLBLeucciELeesM 2009 p53-independent upregulation of miR-34a during oncogene-induced senescence represses MYC. Cell Death Differ 17 236 245
11. BagchiAMillsAA 2008 The Quest for the 1p36 Tumor Suppressor. Cancer Research 68 2551 2556 doi:10.1158/0008-5472.CAN-07-2095
12. WelchCChenYStallingsRL 2007 MicroRNA-34a functions as a potential tumor suppressor by inducing apoptosis in neuroblastoma cells. Oncogene 26 5017 5022
13. VogtMMundingJGrünerMLiffersS-TVerdoodtB 2011 Frequent concomitant inactivation of miR-34a and miR-34b/c by CpG methylation in colorectal, pancreatic, mammary, ovarian, urothelial, and renal cell carcinomas and soft tissue sarcomas. Virchows Arch 458 313 322 doi:10.1007/s00428-010-1030-5
14. ThomasMLiebermanJLalA 2010 Desperately seeking microRNA targets. Nat Struct Mol Biol 17 1169 1174 doi:10.1038/nsmb.1921
15. BartelDP 2009 MicroRNAs: Target Recognition and Regulatory Functions. Cell 136 215 233 doi:10.1016/j.cell.2009.01.002
16. RajewskyN 2006 microRNA target predictions in animals. Nat Genet 38 Suppl S8 13 doi:10.1038/ng1798
17. LalANavarroFMaherCAMaliszewskiLEYanN 2009 miR-24 Inhibits Cell Proliferation by Targeting E2F2, MYC, and Other Cell-Cycle Genes via Binding to “Seedless” 3′UTR MicroRNA Recognition Elements. Molecular Cell 35 610 625 doi:10.1016/j.molcel.2009.08.020
18. ShinCNamJ-WFarhKK-HChiangHRShkumatavaA 2010 Expanding the MicroRNA Targeting Code: Functional Sites with Centered Pairing. Molecular Cell 38 789 802 doi:10.1016/j.molcel.2010.06.005
19. BaekDVillénJShinCCamargoFDGygiSP 2008 The impact of microRNAs on protein output. Nature 455 64 71 doi:10.1038/nature07242
20. AlexiouPMaragkakisMPapadopoulosGLReczkoMHatzigeorgiouAG 2009 Lost in translation: an assessment and perspective for computational microRNA target identification. Bioinformatics 25 3049 3055 doi:10.1093/bioinformatics/btp565
21. TayYZhangJThomsonAMLimBRigoutsosI 2008 MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature 455 1124 1128 doi:10.1038/nature07299
22. JohnsonCDEsquela-KerscherAStefaniGByromMKelnarK 2007 The let-7 MicroRNA Represses Cell Proliferation Pathways in Human Cells. Cancer Res 67 7713 7722 doi:10.1158/0008-5472.CAN-07-1083
23. ChiSWZangJBMeleADarnellRB 2009 Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature 460 479 486 doi:10.1038/nature08170
24. ZisoulisDGLovciMTWilbertMLHuttKRLiangTY 2010 Comprehensive discovery of endogenous Argonaute binding sites in Caenorhabditis elegans. Nat Struct Mol Biol 17 173 179 doi:10.1038/nsmb.1745
25. HafnerMLandthalerMBurgerLKhorshidMHausserJ 2010 Transcriptome-wide Identification of RNA-Binding Protein and MicroRNA Target Sites by PAR-CLIP. Cell 141 129 141 doi:10.1016/j.cell.2010.03.009
26. WeiJSSongYKDurinckSChenQ-RCheukATC 2008 The MYCN oncogene is a direct target of miR-34a. Oncogene 27 5204 5213 doi:10.1038/onc.2008.154
27. RaoDSO'ConnellRMChaudhuriAAGarcia-FloresYGeigerTL 2010 MicroRNA-34a Perturbs B Lymphocyte Development by Repressing the Forkhead Box Transcription Factor Foxp1. Immunity 33 48 59 doi:10.1016/j.immuni.2010.06.013
28. TakagiSNakajimaMKidaKYamauraYFukamiT 2010 MicroRNAs Regulate Human Hepatocyte Nuclear Factor 4α, Modulating the Expression of Metabolic Enzymes and Cell Cycle. Journal of Biological Chemistry 285 4415 4422 doi:10.1074/jbc.M109.085431
29. IchimuraARuikeYTerasawaKShimizuKTsujimotoG 2010 MicroRNA-34a Inhibits Cell Proliferation by Repressing Mitogen-Activated Protein Kinase Kinase 1 during Megakaryocytic Differentiation of K562 Cells. Molecular Pharmacology 77 1016 1024 doi:10.1124/mol.109.063321
30. LiNFuHTieYHuZKongW 2009 miR-34a inhibits migration and invasion by down-regulation of c-Met expression in human hepatocellular carcinoma cells. Cancer Letters 275 44 53 doi:10.1016/j.canlet.2008.09.035
31. MudduluruGCeppiPKumarswamyRScagliottiGVPapottiM 2011 Regulation of Axl receptor tyrosine kinase expression by miR-34a and miR-199a/b in solid cancer. Oncogene 30 2888 2899
32. KallerMLiffersS-TOeljeklausSKuhlmannKRöhS 2011 Genome-wide characterization of miR-34a induced changes in protein and mRNA expression by a combined pulsed SILAC and micro-array analysis. Molecular & Cellular Proteomics. Available: http://www.mcponline.org/content/early/2011/05/12/mcp.M111.010462.abstract. Accessed 1 Jul 2011
33. BommerGTGerinIFengYKaczorowskiAJKuickR 2007 p53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr Biol 17 1298 1307 doi:10.1016/j.cub.2007.06.068
34. ChenQ-RYuL-RTsangPWeiJSSongYK 2011 Systematic Proteome Analysis Identifies Transcription Factor YY1 as a Direct Target of miR-34a. Journal of Proteome Research 10 479 487 doi:10.1021/pr1006697
35. WeeraratneSDAmaniVNeissATeiderNScottDK 2011 miR-34a confers chemosensitivity through modulation of MAGE-A and p53 in medulloblastoma. Neuro-Oncology 13 165 175 doi:10.1093/neuonc/noq179
36. HashimiSTFulcherJAChangMHGovLWangS 2009 MicroRNA profiling identifies miR-34a and miR-21 and their target genes JAG1 and WNT1 in the coordinate regulation of dendritic cell differentiation. Blood 114 404 414 doi:10.1182/blood-2008-09-179150
37. PangRTKLeungCONYeT-MLiuWChiuPCN 2010 MicroRNA-34a suppresses invasion through downregulation of Notch1 and Jagged1 in cervical carcinoma and choriocarcinoma cells. Carcinogenesis 31 1037 1044 doi:10.1093/carcin/bgq066
38. LiYGuessousFZhangYDiPierroCKefasB 2009 MicroRNA-34a Inhibits Glioblastoma Growth by Targeting Multiple Oncogenes. Cancer Research 69 7569 7576 doi:10.1158/0008-5472.CAN-09-0529
39. LewisBPShihI-hungJones-RhoadesMWBartelDPBurgeCB 2003 Prediction of Mammalian MicroRNA Targets. Cell 115 787 798 doi:10.1016/S0092-8674(03)01018-3
40. LiuCKelnarKLiuBChenXCalhoun-DavisT 2011 The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat Med 17 211 215 doi:10.1038/nm.2284
41. ØromUALundAH 2007 Isolation of microRNA targets using biotinylated synthetic microRNAs. Methods 43 162 165 doi:10.1016/j.ymeth.2007.04.007
42. ØromUANielsenFCLundAH 2008 MicroRNA-10a Binds the 5′UTR of Ribosomal Protein mRNAs and Enhances Their Translation. Molecular Cell 30 460 471 doi:10.1016/j.molcel.2008.05.001
43. LalAPanYNavarroFDykxhoornDMMoreauL 2009 miR-24-mediated downregulation of H2AX suppresses DNA repair in terminally differentiated blood cells. Nat Struct Mol Biol 16 492 498 doi:10.1038/nsmb.1589
44. GrimsonAFarhKK-HJohnstonWKGarrett-EngelePLimLP 2007 MicroRNA Targeting Specificity in Mammals: Determinants beyond Seed Pairing. Molecular Cell 27 91 105 doi:10.1016/j.molcel.2007.06.017
45. RobertsPJDerCJ 2007 Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene 26 3291 3310 doi:10.1038/sj.onc.1210422
46. LingerRMAKeatingAKEarpHSGrahamDK 2008 TAM receptor tyrosine kinases: biologic functions, signaling, and potential therapeutic targeting in human cancer. Adv. Cancer Res 100 35 83 doi:10.1016/S0065-230X(08)00002-X
47. GjerdrumCTironCHøibyTStefanssonIHaugenH 2010 Axl is an essential epithelial-to-mesenchymal transition-induced regulator of breast cancer metastasis and patient survival. Proceedings of the National Academy of Sciences 107 1124 1129 doi:10.1073/pnas.0909333107
48. VanhaesebroeckBAliKBilancioAGeeringBFoukasLC 2005 Signalling by PI3K isoforms: insights from gene-targeted mice. Trends in Biochemical Sciences 30 194 204 doi:10.1016/j.tibs.2005.02.008
49. WhittakerSMaraisRZhuAX 2010 The role of signaling pathways in the development and treatment of hepatocellular carcinoma. Oncogene 29 4989 5005
50. KerteszMIovinoNUnnerstallUGaulUSegalE 2007 The role of site accessibility in microRNA target recognition. Nat Genet 39 1278 1284 doi:10.1038/ng2135
51. ElchevaIGoswamiSNoubissiFKSpiegelmanVS 2009 CRD-BP Protects the Coding Region of [beta]TrCP1 mRNA from miR-183-Mediated Degradation. Molecular Cell 35 240 246 doi:10.1016/j.molcel.2009.06.007
52. VasudevanSTongYSteitzJA 2007 Switching from Repression to Activation: MicroRNAs Can Up-Regulate Translation. Science 318 1931 1934 doi:10.1126/science.1149460
53. SalmenaLPolisenoLTayYKatsLPandolfiPP 2011 A ceRNA Hypothesis: The Rosetta Stone of a Hidden RNA Language? Cell 146 353 358 doi:16/j.cell.2011.07.014
54. LewisBPBurgeCBBartelDP 2005 Conserved Seed Pairing, Often Flanked by Adenosines, Indicates that Thousands of Human Genes are MicroRNA Targets. Cell 120 15 20 doi:10.1016/j.cell.2004.12.035
55. FriedmanRCFarhKK-HBurgeCBBartelDP 2009 Most mammalian mRNAs are conserved targets of microRNAs. Genome Research 19 92 105 doi:10.1101/gr.082701.108
56. KanehisaMGotoS 2000 KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Research 28 27 30 doi:10.1093/nar/28.1.27
57. PicoARKelderTvan IerselMPHanspersKConklinBR 2008 WikiPathways: Pathway Editing for the People. PLoS Biol 6 e184 doi:10.1371/journal.pbio.0060184
58. ShannonPMarkielAOzierOBaligaNSWangJT 2003 Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Research 13 2498 2504 doi:10.1101/gr.1239303
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2011 Číslo 11
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- Evidence-Based Annotation of Gene Function in MR-1 Using Genome-Wide Fitness Profiling across 121 Conditions
- De Novo Origins of Human Genes
- TRY-5 Is a Sperm-Activating Protease in Seminal Fluid
- Relative Burden of Large CNVs on a Range of Neurodevelopmental Phenotypes