#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

The Genetic Architecture of Quantitative Traits Cannot Be Inferred from Variance Component Analysis


There has been a great amount of debate over the relative importance of additivity and non-additivity in quantitative trait variation. The main argument supporting the importance of additivity is the observation that the additive component of genetic variance is much greater than non-additive variance components, while the main argument supporting the importance of non-additivity is the identification of many non-additive effects in genetic mapping studies. By recapitulating many classical results and introducing new alternative parameterizations of genetic effects, we point out some of the common mistakes and misleading arguments in using variance component analyses to infer genetic architecture, specifically the gene actions of QTLs. Because of the wide applications of variance component analyses, our study has profound implications and clarifies some of the most confusing concepts in quantitative genetics in the genomics era.


Vyšlo v časopise: The Genetic Architecture of Quantitative Traits Cannot Be Inferred from Variance Component Analysis. PLoS Genet 12(11): e32767. doi:10.1371/journal.pgen.1006421
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1006421

Souhrn

There has been a great amount of debate over the relative importance of additivity and non-additivity in quantitative trait variation. The main argument supporting the importance of additivity is the observation that the additive component of genetic variance is much greater than non-additive variance components, while the main argument supporting the importance of non-additivity is the identification of many non-additive effects in genetic mapping studies. By recapitulating many classical results and introducing new alternative parameterizations of genetic effects, we point out some of the common mistakes and misleading arguments in using variance component analyses to infer genetic architecture, specifically the gene actions of QTLs. Because of the wide applications of variance component analyses, our study has profound implications and clarifies some of the most confusing concepts in quantitative genetics in the genomics era.


Zdroje

1. Fisher RA. The correlation between relatives on the supposition of Mendelian inheritance. Trans R Soc Edinburgh. 1918;52: 399–433. doi: 10.1017/S0080456800012163

2. Falconer DS, Mackay TFC. Introduction to quantitative genetics. 4th ed. Essex, England: Pearson Education Limited; 1996.

3. Lush JL. Animal breeding plans. 2nd ed. Amex, IA: Iowa State College Press; 1943.

4. Mackay TFC. Epistasis and quantitative traits: using model organisms to study gene-gene interactions. Nat Rev Genet. 2014;15: 22–33. doi: 10.1038/nrg3627 24296533

5. Phillips PC. Epistasis—the essential role of gene interactions in the structure and evolution of genetic systems. Nat Rev Genet. 2008;9: 855–867. doi: 10.1038/nrg2452 18852697

6. Hill WG, Goddard ME, Visscher PM. Data and theory point to mainly additive genetic variance for complex traits. PLoS Genet. 2008;4: e1000008. doi: 10.1371/journal.pgen.1000008 18454194

7. Crow JF. On epistasis: why it is unimportant in polygenic directional selection. Philos Trans R Soc Lond B Biol Sci. 2010;365: 1241–4. doi: 10.1098/rstb.2009.0275 20308099

8. Yang J, Benyamin B, McEvoy BP, Gordon S, Henders AK, others. Common SNPs explain a large proportion of the heritability for human height. Nat Gen. 2010;42: 565–569. doi: 10.1038/ng.608

9. Zhu Z, Bakshi A, Vinkhuyzen AAE, Hemani G, Lee SH, Nolte IM, et al. Dominance Genetic Variation Contributes Little to the Missing Heritability for Human Complex Traits. Am J Hum Genet. 2015;96: 377–385. doi: 10.1016/j.ajhg.2015.01.001 25683123

10. Bloom JS, Ehrenreich IM, Loo WT, Lite T-LV, Kruglyak L. Finding the sources of missing heritability in a yeast cross. Nature. 2013;494: 234–7. doi: 10.1038/nature11867 23376951

11. Mäki-Tanila A, Hill WG. Influence of gene interaction on complex trait variation with multi-locus models. Genetics. 2014;198: 1–27. doi: 10.1534/genetics.114.165282 24990992

12. Cheverud JM, Routman EJ. Epistasis and its contribution to genetic variance components. Genetics. 1995;139: 1455–1461. Available: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1206471&tool=pmcentrez&rendertype=abstract 7768453

13. Zeng ZB, Wang T, Zou W. Modeling quantitative trait loci and interpretation of models. Genetics. 2005;169: 1711–1725. doi: 10.1534/genetics.104.035857 15654105

14. Alvarez-Castro JM, Carlborg O. A unified model for functional and statistical epistasis and its application in quantitative trait loci analysis. Genetics. 2007;176: 1151–1167. doi: 10.1534/genetics.106.067348 17409082

15. Chen G-B. On the reconciliation of missing heritability for genome-wide association studies. Eur J Human Genet. 2016; doi: 10.1038/ejhg.2016.89 27436266

16. Nelson RM, Pettersson ME, Carlborg Ö. A century after Fisher: Time for a new paradigm in quantitative genetics. Trends in Genetics. 2013. pp. 669–676. doi: 10.1016/j.tig.2013.09.006 24161664

17. Yang J, Lee SH, Goddard ME, Visscher PM. GCTA: A tool for genome-wide complex trait analysis. Am J Hum Genet. 2011;88: 76–82. doi: 10.1016/j.ajhg.2010.11.011 21167468

Štítky
Genetika Reprodukčná medicína
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#