A genome wide association study identifies a lncRna as risk factor for pathological inflammatory responses in leprosy
Leprosy still affects approximately 200,000 new victims each year. A major challenge of leprosy control is the prevention of permanent disability due to nerve damage. Nerve damage occurs if leprosy remains undiagnosed for extended periods or when patients undergo pathological inflammatory responses termed Type-1 Reactions (T1R). T1R is a rare example where beneficial inflammatory responses are temporal separated from host pathological responses. There is strong experimental evidence that supports a role of host genetic factors in T1R susceptibility. Here, we employed a genome-wide association study (GWAS) to investigate susceptibility factors for T1R in Vietnamese families. We followed up the initial GWAS findings in independent population samples from Vietnam and Brazil and identified a set of cis-eQTL genetic variants for the ENSG00000235140 lncRNA as global risk factors for T1R. To test our proposal that T1R is a strong model for pathological inflammatory responses we evaluated if inflammatory bowel disease (IBD) genetic risk-factors were enriched among T1R risk factors. We observed that more than 10% of IBD-risk loci were nominally associated with risk for T1R suggesting a shared mechanism of excessive inflammatory response in the both disease etiologies.
Vyšlo v časopise:
A genome wide association study identifies a lncRna as risk factor for pathological inflammatory responses in leprosy. PLoS Genet 13(2): e32767. doi:10.1371/journal.pgen.1006637
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1006637
Souhrn
Leprosy still affects approximately 200,000 new victims each year. A major challenge of leprosy control is the prevention of permanent disability due to nerve damage. Nerve damage occurs if leprosy remains undiagnosed for extended periods or when patients undergo pathological inflammatory responses termed Type-1 Reactions (T1R). T1R is a rare example where beneficial inflammatory responses are temporal separated from host pathological responses. There is strong experimental evidence that supports a role of host genetic factors in T1R susceptibility. Here, we employed a genome-wide association study (GWAS) to investigate susceptibility factors for T1R in Vietnamese families. We followed up the initial GWAS findings in independent population samples from Vietnam and Brazil and identified a set of cis-eQTL genetic variants for the ENSG00000235140 lncRNA as global risk factors for T1R. To test our proposal that T1R is a strong model for pathological inflammatory responses we evaluated if inflammatory bowel disease (IBD) genetic risk-factors were enriched among T1R risk factors. We observed that more than 10% of IBD-risk loci were nominally associated with risk for T1R suggesting a shared mechanism of excessive inflammatory response in the both disease etiologies.
Zdroje
1. John B, Lewis KR. Chromosome variability and geographic distribution in insects. Science. 1966;152(3723):711–21. doi: 10.1126/science.152.3723.711 17797432
2. Muller M, Wandel S, Colebunders R, Attia S, Furrer H, Egger M, et al. Immune reconstitution inflammatory syndrome in patients starting antiretroviral therapy for HIV infection: a systematic review and meta-analysis. Lancet Infect Dis. 2010;10(4):251–61. PubMed Central PMCID: PMCPMC4183458. doi: 10.1016/S1473-3099(10)70026-8 20334848
3. Vincent QB, Ardant MF, Adeye A, Goundote A, Saint-Andre JP, Cottin J, et al. Clinical epidemiology of laboratory-confirmed Buruli ulcer in Benin: a cohort study. Lancet Glob Health. 2014;2(7):e422–30. doi: 10.1016/S2214-109X(14)70223-2 25103396
4. Nienhuis WA, Stienstra Y, Abass KM, Tuah W, Thompson WA, Awuah PC, et al. Paradoxical responses after start of antimicrobial treatment in Mycobacterium ulcerans infection. Clin Infect Dis. 2012;54(4):519–26. doi: 10.1093/cid/cir856 22156855
5. Scollard DM, Martelli CM, Stefani MM, Maroja Mde F, Villahermosa L, Pardillo F, et al. Risk factors for leprosy reactions in three endemic countries. Am J Trop Med Hyg. 2015;92(1):108–14. doi: 10.4269/ajtmh.13-0221 25448239
6. Raffe SF, Thapa M, Khadge S, Tamang K, Hagge D, Lockwood DN. Diagnosis and treatment of leprosy reactions in integrated services—the patients' perspective in Nepal. PLoS Negl Trop Dis. 2013;7(3):e2089. PubMed Central PMCID: PMC3591330. doi: 10.1371/journal.pntd.0002089 23505585
7. Ranque B, Nguyen VT, Vu HT, Nguyen TH, Nguyen NB, Pham XK, et al. Age is an important risk factor for onset and sequelae of reversal reactions in Vietnamese patients with leprosy. Clin Infect Dis. 2007;44(1):33–40. doi: 10.1086/509923 17143812
8. Kumar B, Dogra S, Kaur I. Epidemiological characteristics of leprosy reactions: 15 years experience from north India. Int J Lepr Other Mycobact Dis. 2004;72(2):125–33. doi: 10.1489/1544-581X(2004)072<0125:ECOLRY>2.0.CO;2 15301592
9. Van Brakel WH, Khawas IB, Lucas SB. Reactions in leprosy: an epidemiological study of 386 patients in west Nepal. Lepr Rev. 1994;65(3):190–203. Epub 1994/09/01. 8942150
10. Becx-Bleumink M, Berhe D. Occurrence of reactions, their diagnosis and management in leprosy patients treated with multidrug therapy; experience in the leprosy control program of the All Africa Leprosy and Rehabilitation Training Center (ALERT) in Ethiopia. Int J Lepr Other Mycobact Dis. 1992;60(2):173–84. Epub 1992/06/01. 1522359
11. Orlova M, Cobat A, Huong NT, Ba NN, Van Thuc N, Spencer J, et al. Gene set signature of reversal reaction type I in leprosy patients. PLoS Genet. 2013;9(7):e1003624. PubMed Central PMCID: PMC3708838. doi: 10.1371/journal.pgen.1003624 23874223
12. Misch EA, Macdonald M, Ranjit C, Sapkota BR, Wells RD, Siddiqui MR, et al. Human TLR1 deficiency is associated with impaired mycobacterial signaling and protection from leprosy reversal reaction. PLoS Negl Trop Dis. 2008;2(5):e231. PubMed Central PMCID: PMC2330092. doi: 10.1371/journal.pntd.0000231 18461142
13. Bochud PY, Hawn TR, Siddiqui MR, Saunderson P, Britton S, Abraham I, et al. Toll-like receptor 2 (TLR2) polymorphisms are associated with reversal reaction in leprosy. J Infect Dis. 2008;197(2):253–61. PubMed Central PMCID: PMC3077295. doi: 10.1086/524688 18177245
14. Berrington WR, Macdonald M, Khadge S, Sapkota BR, Janer M, Hagge DA, et al. Common polymorphisms in the NOD2 gene region are associated with leprosy and its reactive states. J Infect Dis. 2010;201(9):1422–35. PubMed Central PMCID: PMC2853728. doi: 10.1086/651559 20350193
15. Fava VM, Manry J, Cobat A, Orlova M, Van Thuc N, Ba NN, et al. A Missense LRRK2 Variant Is a Risk Factor for Excessive Inflammatory Responses in Leprosy. PLoS Negl Trop Dis. 2016;10(2):e0004412. PubMed Central PMCID: PMCPMC4742274. doi: 10.1371/journal.pntd.0004412 26844546
16. Fava VM, Cobat A, Van Thuc N, Latini AC, Stefani MM, Belone AF, et al. Association of TNFSF8 regulatory variants with excessive inflammatory responses but not leprosy per se. J Infect Dis. 2015;211(6):968–77. doi: 10.1093/infdis/jiu566 25320285
17. Fava VM, Sales-Marques C, Moraes MO, Schurr E. Age dependent association of TNFSF15/TNFSF8 variants and leprosy type-1 reaction. Frontiers in Immunology. 2017;In press.
18. Fava V, Orlova M, Cobat A, Alcais A, Mira M, Schurr E. Genetics of leprosy reactions: an overview. Mem Inst Oswaldo Cruz. 2012;107 Suppl 1:132–42. Epub 2013/01/11.
19. Consortium GT. Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science. 2015;348(6235):648–60. PubMed Central PMCID: PMCPMC4547484. doi: 10.1126/science.1262110 25954001
20. Ward LD, Kellis M. HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants. Nucleic Acids Res. 2012;40(Database issue):D930–4. Epub 2011/11/09. PubMed Central PMCID: PMC3245002. doi: 10.1093/nar/gkr917 22064851
21. Grant AV, Alter A, Huong NT, Orlova M, Van Thuc N, Ba NN, et al. Crohn's disease susceptibility genes are associated with leprosy in the Vietnamese population. J Infect Dis. 2012;206(11):1763–7. doi: 10.1093/infdis/jis588 22984114
22. Schurr E, Gros P. A common genetic fingerprint in leprosy and Crohn's disease? N Engl J Med. 2009;361(27):2666–8. Epub 2009/12/19. doi: 10.1056/NEJMe0910690 20018963
23. Zhang FR, Huang W, Chen SM, Sun LD, Liu H, Li Y, et al. Genomewide association study of leprosy. N Engl J Med. 2009;361(27):2609–18. doi: 10.1056/NEJMoa0903753 20018961
24. Liu JZ, van Sommeren S, Huang H, Ng SC, Alberts R, Takahashi A, et al. Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations. Nat Genet. 2015;47(9):979–86. doi: 10.1038/ng.3359 26192919
25. Schizophrenia Working Group of the Psychiatric Genomics C. Biological insights from 108 schizophrenia-associated genetic loci. Nature. 2014;511(7510):421–7. PubMed Central PMCID: PMC4112379. doi: 10.1038/nature13595 25056061
26. Wood AR, Esko T, Yang J, Vedantam S, Pers TH, Gustafsson S, et al. Defining the role of common variation in the genomic and biological architecture of adult human height. Nat Genet. 2014;46(11):1173–86. PubMed Central PMCID: PMCPMC4250049. doi: 10.1038/ng.3097 25282103
27. Shin SY, Fauman EB, Petersen AK, Krumsiek J, Santos R, Huang J, et al. An atlas of genetic influences on human blood metabolites. Nat Genet. 2014;46(6):543–50. PubMed Central PMCID: PMCPMC4064254. doi: 10.1038/ng.2982 24816252
28. Westra HJ, Peters MJ, Esko T, Yaghootkar H, Schurmann C, Kettunen J, et al. Systematic identification of trans eQTLs as putative drivers of known disease associations. Nat Genet. 2013;45(10):1238–43. PubMed Central PMCID: PMC3991562. doi: 10.1038/ng.2756 24013639
29. Alter A, Fava VM, Huong NT, Singh M, Orlova M, Van Thuc N, et al. Linkage disequilibrium pattern and age-at-diagnosis are critical for replicating genetic associations across ethnic groups in leprosy. Hum Genet. 2013;132(1):107–16. Epub 2012/10/12. doi: 10.1007/s00439-012-1227-6 23052943
30. Liu H, Irwanto A, Fu X, Yu G, Yu Y, Sun Y, et al. Discovery of six new susceptibility loci and analysis of pleiotropic effects in leprosy. Nat Genet. 2015.
31. Wang Z, Sun Y, Fu X, Yu G, Wang C, Bao F, et al. A large-scale genome-wide association and meta-analysis identified four novel susceptibility loci for leprosy. Nature communications. 2016;7:13760. PubMed Central PMCID: PMCPMC5172377. doi: 10.1038/ncomms13760 27976721
32. Petryszak R, Burdett T, Fiorelli B, Fonseca NA, Gonzalez-Porta M, Hastings E, et al. Expression Atlas update—a database of gene and transcript expression from microarray- and sequencing-based functional genomics experiments. Nucleic Acids Res. 2014;42(Database issue):D926–32. PubMed Central PMCID: PMCPMC3964963. doi: 10.1093/nar/gkt1270 24304889
33. Liu H, Irwanto A, Tian H, Fu X, Yu Y, Yu G, et al. Identification of IL18RAP/IL18R1 and IL12B as leprosy risk genes demonstrates shared pathogenesis between inflammation and infectious diseases. Am J Hum Genet. 2012;91(5):935–41. PubMed Central PMCID: PMC3487119. doi: 10.1016/j.ajhg.2012.09.010 23103228
34. Xiao R, Boehnke M. Quantifying and correcting for the winner's curse in genetic association studies. Genet Epidemiol. 2009;33(5):453–62. PubMed Central PMCID: PMCPMC2706290. doi: 10.1002/gepi.20398 19140131
35. Scollard DM, Adams LB, Gillis TP, Krahenbuhl JL, Truman RW, Williams DL. The continuing challenges of leprosy. Clinical microbiology reviews. 2006;19(2):338–81. PubMed Central PMCID: PMC1471987. doi: 10.1128/CMR.19.2.338-381.2006 16614253
36. Gaschignard J, Quentin BV, Jais JP, Cobat A, Alcais A. Implicit Hypotheses Are Hidden Power Droppers in Family-Based Association Studies of Secondary Outcomes. Open Journal of Statistics. 2015;5(1):35–45. Epub 01/2015.
37. Sousa AL, Fava VM, Sampaio LH, Martelli CM, Costa MB, Mira MT, et al. Genetic and immunological evidence implicates interleukin 6 as a susceptibility gene for leprosy type 2 reaction. J Infect Dis. 2012;205(9):1417–24. Epub 2012/03/31. doi: 10.1093/infdis/jis208 22459738
38. Sales-Marques C, Salomao H, Fava VM, Alvarado-Arnez LE, Amaral EP, Cardoso CC, et al. NOD2 and CCDC122-LACC1 genes are associated with leprosy susceptibility in Brazilians. Hum Genet. 2014;133(12):1525–32. doi: 10.1007/s00439-014-1502-9 25367361
39. Delaneau O, Zagury JF, Marchini J. Improved whole-chromosome phasing for disease and population genetic studies. Nature methods. 2013;10(1):5–6. doi: 10.1038/nmeth.2307 23269371
40. Howie B, Fuchsberger C, Stephens M, Marchini J, Abecasis GR. Fast and accurate genotype imputation in genome-wide association studies through pre-phasing. Nat Genet. 2012;44(8):955–9. PubMed Central PMCID: PMCPMC3696580. doi: 10.1038/ng.2354 22820512
41. Marchini J, Howie B. Genotype imputation for genome-wide association studies. Nat Rev Genet. 2010;11(7):499–511. doi: 10.1038/nrg2796 20517342
42. Cobat A, Abel L, Alcais A, Schurr E. A General Efficient and Flexible Approach for Genome-Wide Association Analyses of Imputed Genotypes in Family-Based Designs. Genet Epidemiol. 2014.
43. Tregouet DA, Garelle V. A new JAVA interface implementation of THESIAS: testing haplotype effects in association studies. Bioinformatics. 2007;23(8):1038–9. Epub 2007/02/20. doi: 10.1093/bioinformatics/btm058 17308338
44. Barrett JC, Fry B, Maller J, Daly MJ. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics. 2005;21(2):263–5. doi: 10.1093/bioinformatics/bth457 15297300
45. Willer CJ, Li Y, Abecasis GR. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics. 2010;26(17):2190–1. PubMed Central PMCID: PMC2922887. doi: 10.1093/bioinformatics/btq340 20616382
46. Han B, Eskin E. Random-effects model aimed at discovering associations in meta-analysis of genome-wide association studies. Am J Hum Genet. 2011;88(5):586–98. PubMed Central PMCID: PMCPMC3146723. doi: 10.1016/j.ajhg.2011.04.014 21565292
47. Schaid DJ, Rowland C. Use of parents, sibs, and unrelated controls for detection of associations between genetic markers and disease. Am J Hum Genet. 1998;63(5):1492–506. Epub 1998/10/30. PubMed Central PMCID: PMC1377560. doi: 10.1086/302094 9792877
48. Jostins L, Ripke S, Weersma RK, Duerr RH, McGovern DP, Hui KY, et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature. 2012;491(7422):119–24. PubMed Central PMCID: PMC3491803. doi: 10.1038/nature11582 23128233
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2017 Číslo 2
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
Najčítanejšie v tomto čísle
- The analysis of translation-related gene set boosts debates around origin and evolution of mimiviruses
- A genome wide association study identifies a lncRna as risk factor for pathological inflammatory responses in leprosy
- Controlling caspase activity in life and death
- Widespread signatures of positive selection in common risk alleles associated to autism spectrum disorder