Mouse protein coding diversity: What’s left to discover?
Autoři:
Jingtao Lilue aff001; Anu Shivalikanjli aff001; David J. Adams aff003; Thomas M. Keane aff001
Působiště autorů:
European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridge, United Kingdom
aff001; Instituto Gulbenkian de Ciência, Oeiras, Lisbon, Portugal
aff002; Wellcome Sanger Institute, Hinxton, United Kingdom
aff003; School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
aff004
Vyšlo v časopise:
Mouse protein coding diversity: What’s left to discover?. PLoS Genet 15(11): e32767. doi:10.1371/journal.pgen.1008446
Kategorie:
Review
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1008446
Souhrn
For over a century, mice have been used to model human disease, leading to many fundamental discoveries about mammalian biology and the development of new therapies. Mouse genetics research has been further catalysed by a plethora of genomic resources developed in the last 20 years, including the genome sequence of C57BL/6J and more recently the first draft reference genomes for 16 additional laboratory strains. Collectively, the comparison of these genomes highlights the extreme diversity that exists at loci associated with the immune system, pathogen response, and key sensory functions, which form the foundation for dissecting phenotypic traits in vivo. We review the current status of the mouse genome across the diversity of the mouse lineage and discuss the value of mice to understanding human disease.
Klíčová slova:
Haplotypes – Comparative genomics – Mammalian genomics – Mouse models – Mice – Inbred strains – Inbreeding – Human genomics
Zdroje
1. Beck JA, Lloyd S, Hafezparast M, Lennon-Pierce M, Eppig JT, Festing MF, et al. Genealogies of mouse inbred strains. Nat Genet. 2000;24: 23–25. doi: 10.1038/71641 10615122
2. Taft RA, Davisson M, Wiles MV. Know thy mouse. Trends Genet TIG. 2006;22: 649–653. doi: 10.1016/j.tig.2006.09.010 17007958
3. Mouse Genome Sequencing Consortium, Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF, et al. Initial sequencing and comparative analysis of the mouse genome. Nature. 2002;420: 520–562. doi: 10.1038/nature01262 12466850
4. Keane TM, Goodstadt L, Danecek P, White MA, Wong K, Yalcin B, et al. Mouse genomic variation and its effect on phenotypes and gene regulation. Nature. 2011;477: 289–294. doi: 10.1038/nature10413 21921910
5. Yalcin B, Wong K, Agam A, Goodson M, Keane TM, Gan X, et al. Sequence-based characterization of structural variation in the mouse genome. Nature. 2011;477: 326–329. doi: 10.1038/nature10432 21921916
6. van der Weyden L, Adams DJ, Bradley A. Tools for targeted manipulation of the mouse genome. Physiol Genomics. 2002;11: 133–164. doi: 10.1152/physiolgenomics.00074.2002 12464689
7. Yang H, Bell TA, Churchill GA, Pardo-Manuel de Villena F. On the subspecific origin of the laboratory mouse. Nat Genet. 2007;39: 1100–1107. doi: 10.1038/ng2087 17660819
8. Yang H, Wang JR, Didion JP, Buus RJ, Bell TA, Welsh CE, et al. Subspecific origin and haplotype diversity in the laboratory mouse. Nat Genet. 2011;43: 648–655. doi: 10.1038/ng.847 21623374
9. Fischer Lindahl K. On naming H2 haplotypes: functional significance of MHC class Ib alleles. Immunogenetics. 1997;46: 53–62. doi: 10.1007/s002510050242 9148789
10. Flaherty L, Elliott E, Tine JA, Walsh AC, Waters JB. Immunogenetics of the Q and TL regions of the mouse. Crit Rev Immunol. 1990;10: 131–175. 2076187
11. Guénet JL, Bonhomme F. Wild mice: an ever-increasing contribution to a popular mammalian model. Trends Genet TIG. 2003;19: 24–31. doi: 10.1016/s0168-9525(02)00007-0 12493245
12. Hassan MA, Olijnik A-A, Frickel E-M, Saeij JP. Clonal and atypical Toxoplasma strain differences in virulence vary with mouse sub-species. Int J Parasitol. 2019;49: 63–70. doi: 10.1016/j.ijpara.2018.08.007 30471286
13. Lilue J, Müller UB, Steinfeldt T, Howard JC. Reciprocal virulence and resistance polymorphism in the relationship between Toxoplasma gondii and the house mouse. eLife. 2013;2: e01298. doi: 10.7554/eLife.01298 24175088
14. Song Y, Endepols S, Klemann N, Richter D, Matuschka F-R, Shih C-H, et al. Adaptive introgression of anticoagulant rodent poison resistance by hybridization between old world mice. Curr Biol CB. 2011;21: 1296–1301. doi: 10.1016/j.cub.2011.06.043 21782438
15. Bagot S, Campino S, Penha-Gonçalves C, Pied S, Cazenave P-A, Holmberg D. Identification of two cerebral malaria resistance loci using an inbred wild-derived mouse strain. Proc Natl Acad Sci U S A. 2002;99: 9919–9923. doi: 10.1073/pnas.152215199 12114535
16. Lilue J, Doran AG, Fiddes IT, Abrudan M, Armstrong J, Bennett R, et al. Sixteen diverse laboratory mouse reference genomes define strain-specific haplotypes and novel functional loci. Nat Genet. 2018;50: 1574–1583. doi: 10.1038/s41588-018-0223-8 30275530
17. Doran AG, Wong K, Flint J, Adams DJ, Hunter KW, Keane TM. Deep genome sequencing and variation analysis of 13 inbred mouse strains defines candidate phenotypic alleles, private variation and homozygous truncating mutations. Genome Biol. 2016;17: 167. doi: 10.1186/s13059-016-1024-y 27480531
18. Li J, Jiang T, Mao J-H, Balmain A, Peterson L, Harris C, et al. Genomic segmental polymorphisms in inbred mouse strains. Nat Genet. 2004;36: 952–954. doi: 10.1038/ng1417 15322544
19. Cutler G, Marshall LA, Chin N, Baribault H, Kassner PD. Significant gene content variation characterizes the genomes of inbred mouse strains. Genome Res. 2007;17: 1743–1754. doi: 10.1101/gr.6754607 17989247
20. Locke MEO, Milojevic M, Eitutis ST, Patel N, Wishart AE, Daley M, et al. Genomic copy number variation in Mus musculus. BMC Genomics. 2015;16: 497. doi: 10.1186/s12864-015-1713-z 26141061
21. Morgan AP, Holt JM, McMullan RC, Bell TA, Clayshulte AM-F, Didion JP, et al. The evolutionary fates of a large segmental duplication in mouse [Internet]. Genetics; 2016 Mar. doi: 10.1101/043687
22. Carlyle JR, Mesci A, Fine JH, Chen P, Bélanger S, Tai L-H, et al. Evolution of the Ly49 and Nkrp1 recognition systems. Semin Immunol. 2008;20: 321–330. doi: 10.1016/j.smim.2008.05.004 18595730
23. Brown MG, Scalzo AA. NK gene complex dynamics and selection for NK cell receptors. Semin Immunol. 2008;20: 361–368. doi: 10.1016/j.smim.2008.06.004 18640056
24. Nobuhara H, Kuida K, Furutani M, Shiroishi T, Moriwaki K, Yanagi Y, et al. Polymorphism of T-cell receptor genes among laboratory and wild mice: diverse origins of laboratory mice. Immunogenetics. 1989;30: 405–413. doi: 10.1007/bf02421171 2574156
25. Barstad P, Farnsworth V, Weigert M, Cohn M, Hood L. Mouse immunoglobulin heavy chains are coded by multiple germ line variable region genes. Proc Natl Acad Sci U S A. 1974;71: 4096–4100. doi: 10.1073/pnas.71.10.4096 4215076
26. Green R, Wilkins C, Thomas S, Sekine A, Hendrick DM, Voss K, et al. Oas1b-dependent Immune Transcriptional Profiles of West Nile Virus Infection in the Collaborative Cross. G3 Bethesda Md. 2017;7: 1665–1682. doi: 10.1534/g3.117.041624 28592649
27. Nakaya Y, Lilue J, Stavrou S, Moran EA, Ross SR. AIM2-Like Receptors Positively and Negatively Regulate the Interferon Response Induced by Cytosolic DNA. mBio. 2017;8. doi: 10.1128/mBio.00944-17 28679751
28. Mavrommatis E, Fish EN, Platanias LC. The schlafen family of proteins and their regulation by interferons. J Interferon Cytokine Res Off J Int Soc Interferon Cytokine Res. 2013;33: 206–210. doi: 10.1089/jir.2012.0133 23570387
29. Sastalla I, Crown D, Masters SL, McKenzie A, Leppla SH, Moayeri M. Transcriptional analysis of the three Nlrp1 paralogs in mice. BMC Genomics. 2013;14: 188. doi: 10.1186/1471-2164-14-188 23506131
30. Shanahan MT, Tanabe H, Ouellette AJ. Strain-specific polymorphisms in Paneth cell α-defensins of C57BL/6 mice and evidence of vestigial myeloid α-defensin pseudogenes. Infect Immun. 2011;79: 459–473. doi: 10.1128/IAI.00996-10 21041494
31. Pemberton AD, Knight PA, Gamble J, Colledge WH, Lee J-K, Pierce M, et al. Innate BALB/c enteric epithelial responses to Trichinella spiralis: inducible expression of a novel goblet cell lectin, intelectin-2, and its natural deletion in C57BL/10 mice. J Immunol Baltim Md 1950. 2004;173: 1894–1901. doi: 10.4049/jimmunol.173.3.1894 15265922
32. Lu ZH, di Domenico A, Wright SH, Knight PA, Whitelaw CBA, Pemberton AD. Strain-specific copy number variation in the intelectin locus on the 129 mouse chromosome 1. BMC Genomics. 2011;12: 110. doi: 10.1186/1471-2164-12-110 21324158
33. Vanhamme L, Paturiaux-Hanocq F, Poelvoorde P, Nolan DP, Lins L, Van Den Abbeele J, et al. Apolipoprotein L-I is the trypanosome lytic factor of human serum. Nature. 2003;422: 83–87. doi: 10.1038/nature01461 12621437
34. Barbee SD, Woodward MJ, Turchinovich G, Mention J-J, Lewis JM, Boyden LM, et al. Skint-1 is a highly specific, unique selecting component for epidermal T cells. Proc Natl Acad Sci U S A. 2011;108: 3330–3335. doi: 10.1073/pnas.1010890108 21300860
35. Boyden LM, Lewis JM, Barbee SD, Bas A, Girardi M, Hayday AC, et al. Skint1, the prototype of a newly identified immunoglobulin superfamily gene cluster, positively selects epidermal gammadelta T cells. Nat Genet. 2008;40: 656–662. doi: 10.1038/ng.108 18408721
36. Percopo CM, Dyer KD, Ochkur SI, Luo JL, Fischer ER, Lee JJ, et al. Activated mouse eosinophils protect against lethal respiratory virus infection. Blood. 2014;123: 743–752. doi: 10.1182/blood-2013-05-502443 24297871
37. Nitto T, Dyer KD, Mejia RA, Byström J, Wynn TA, Rosenberg HF. Characterization of the divergent eosinophil ribonuclease, mEar 6, and its expression in response to Schistosoma mansoni infection in vivo. Genes Immun. 2004;5: 668–674. doi: 10.1038/sj.gene.6364143 15526002
38. Liu Y, Soto I, Tong Q, Chin A, Bühring H-J, Wu T, et al. SIRPbeta1 is expressed as a disulfide-linked homodimer in leukocytes and positively regulates neutrophil transepithelial migration. J Biol Chem. 2005;280: 36132–36140. doi: 10.1074/jbc.M506419200 16081415
39. Jin X, Guan Y, Shen H, Pang Y, Liu L, Jia Q, et al. Copy Number Variation of Immune-Related Genes and Their Association with Iodine in Adults with Autoimmune Thyroid Diseases. Int J Endocrinol. 2018;2018: 1705478. doi: 10.1155/2018/1705478 29713342
40. Kajimoto N, Kirpekar SM, Wakade AR. An investigation of spontaneous potentials recorded from the smooth-muscle cells of the guinea-pig seminal vesicle. J Physiol. 1972;224: 105–119. doi: 10.1113/jphysiol.1972.sp009883 5039969
41. Thierry-Mieg D, Thierry-Mieg J. AceView: a comprehensive cDNA-supported gene and transcripts annotation. Genome Biol. 2006;7 Suppl 1: S12.1–14. doi: 10.1186/gb-2006-7-s1-s12 16925834
42. Klamp T, Boehm U, Schenk D, Pfeffer K, Howard JC. A giant GTPase, very large inducible GTPase-1, is inducible by IFNs. J Immunol Baltim Md 1950. 2003;171: 1255–1265. doi: 10.4049/jimmunol.171.3.1255 12874213
43. Bergin DA, Hurley K, McElvaney NG, Reeves EP. Alpha-1 antitrypsin: a potent anti-inflammatory and potential novel therapeutic agent. Arch Immunol Ther Exp (Warsz). 2012;60: 81–97. doi: 10.1007/s00005-012-0162-5 22349104
44. Fregonese L, Stolk J. Hereditary alpha-1-antitrypsin deficiency and its clinical consequences. Orphanet J Rare Dis. 2008;3: 16. doi: 10.1186/1750-1172-3-16 18565211
45. Odendall C, Kagan JC. Activation and pathogenic manipulation of the sensors of the innate immune system. Microbes Infect. 2017;19: 229–237. doi: 10.1016/j.micinf.2017.01.003 28093320
46. Soranzo N, Bufe B, Sabeti PC, Wilson JF, Weale ME, Marguerie R, et al. Positive selection on a high-sensitivity allele of the human bitter-taste receptor TAS2R16. Curr Biol CB. 2005;15: 1257–1265. doi: 10.1016/j.cub.2005.06.042 16051168
47. Lossow K, Hübner S, Roudnitzky N, Slack JP, Pollastro F, Behrens M, et al. Comprehensive Analysis of Mouse Bitter Taste Receptors Reveals Different Molecular Receptive Ranges for Orthologous Receptors in Mice and Humans. J Biol Chem. 2016;291: 15358–15377. doi: 10.1074/jbc.M116.718544 27226572
48. Boughter JD, Raghow S, Nelson TM, Munger SD. Inbred mouse strains C57BL/6J and DBA/2J vary in sensitivity to a subset of bitter stimuli. BMC Genet. 2005;6: 36. doi: 10.1186/1471-2156-6-36 15967025
49. Nelson TM, Munger SD, Boughter JD. Taste sensitivities to PROP and PTC vary independently in mice. Chem Senses. 2003;28: 695–704. doi: 10.1093/chemse/bjg062 14627538
50. Bachmanov AA, Bosak NP, Lin C, Matsumoto I, Ohmoto M, Reed DR, et al. Genetics of taste receptors. Curr Pharm Des. 2014;20: 2669–2683. doi: 10.2174/13816128113199990566 23886383
51. Zhang X, Firestein S. The olfactory receptor gene superfamily of the mouse. Nat Neurosci. 2002;5: 124–133. doi: 10.1038/nn800 11802173
52. Young JM, Friedman C, Williams EM, Ross JA, Tonnes-Priddy L, Trask BJ. Different evolutionary processes shaped the mouse and human olfactory receptor gene families. Hum Mol Genet. 2002;11: 535–546. doi: 10.1093/hmg/11.5.535 11875048
53. Crasto C, Marenco L, Miller P, Shepherd G. Olfactory Receptor Database: a metadata-driven automated population from sources of gene and protein sequences. Nucleic Acids Res. 2002;30: 354–360. doi: 10.1093/nar/30.1.354 11752336
54. Ferrero DM, Wacker D, Roque MA, Baldwin MW, Stevens RC, Liberles SD. Agonists for 13 trace amine-associated receptors provide insight into the molecular basis of odor selectivity. ACS Chem Biol. 2012;7: 1184–1189. doi: 10.1021/cb300111e 22545963
55. Young JM, Trask BJ. The sense of smell: genomics of vertebrate odorant receptors. Hum Mol Genet. 2002;11: 1153–1160. doi: 10.1093/hmg/11.10.1153 12015274
56. Silva L, Antunes A. Vomeronasal Receptors in Vertebrates and the Evolution of Pheromone Detection. Annu Rev Anim Biosci. 2017;5: 353–370. doi: 10.1146/annurev-animal-022516-022801 27912243
57. Wynn EH, Sánchez-Andrade G, Carss KJ, Logan DW. Genomic variation in the vomeronasal receptor gene repertoires of inbred mice. BMC Genomics. 2012;13: 415. doi: 10.1186/1471-2164-13-415 22908939
58. Yoder AD, Larsen PA. The molecular evolutionary dynamics of the vomeronasal receptor (class 1) genes in primates: a gene family on the verge of a functional breakdown. Front Neuroanat. 2014;8: 153. doi: 10.3389/fnana.2014.00153 25565978
59. Emes RD, Beatson SA, Ponting CP, Goodstadt L. Evolution and comparative genomics of odorant- and pheromone-associated genes in rodents. Genome Res. 2004;14: 591–602. doi: 10.1101/gr.1940604 15060000
60. Lane RP, Young J, Newman T, Trask BJ. Species specificity in rodent pheromone receptor repertoires. Genome Res. 2004;14: 603–608. doi: 10.1101/gr.2117004 15060001
61. Grus WE, Zhang J. Rapid turnover and species-specificity of vomeronasal pheromone receptor genes in mice and rats. Gene. 2004;340: 303–312. doi: 10.1016/j.gene.2004.07.037 15475172
62. Park SH, Podlaha O, Grus WE, Zhang J. The microevolution of V1r vomeronasal receptor genes in mice. Genome Biol Evol. 2011;3: 401–412. doi: 10.1093/gbe/evr039 21551350
63. Krieger J, Schmitt A, Löbel D, Gudermann T, Schultz G, Breer H, et al. Selective activation of G protein subtypes in the vomeronasal organ upon stimulation with urine-derived compounds. J Biol Chem. 1999;274: 4655–4662. doi: 10.1074/jbc.274.8.4655 9988702
64. Gubits RM, Lynch KR, Kulkarni AB, Dolan KP, Gresik EW, Hollander P, et al. Differential regulation of alpha 2u globulin gene expression in liver, lachrymal gland, and salivary gland. J Biol Chem. 1984;259: 12803–12809. 6208189
65. Shahan K, Denaro M, Gilmartin M, Shi Y, Derman E. Expression of six mouse major urinary protein genes in the mammary, parotid, sublingual, submaxillary, and lachrymal glands and in the liver. Mol Cell Biol. 1987;7: 1947–1954. doi: 10.1128/mcb.7.5.1947 3600653
66. Hurst null, Robertson null, Tolladay null, Beynon null. Proteins in urine scent marks of male house mice extend the longevity of olfactory signals. Anim Behav. 1998;55: 1289–1297. doi: 10.1006/anbe.1997.0650 9632512
67. Chamero P, Marton TF, Logan DW, Flanagan K, Cruz JR, Saghatelian A, et al. Identification of protein pheromones that promote aggressive behaviour. Nature. 2007;450: 899–902. doi: 10.1038/nature05997 18064011
68. Cheetham SA, Smith AL, Armstrong SD, Beynon RJ, Hurst JL. Limited variation in the major urinary proteins of laboratory mice. Physiol Behav. 2009;96: 253–261. doi: 10.1016/j.physbeh.2008.10.005 18973768
69. Thoß M, Enk V, Yu H, Miller I, Luzynski KC, Balint B, et al. Diversity of major urinary proteins (MUPs) in wild house mice. Sci Rep. 2016;6: 38378. doi: 10.1038/srep38378 27922085
70. Hattori T, Osakada T, Masaoka T, Ooyama R, Horio N, Mogi K, et al. Exocrine Gland-Secreting Peptide 1 Is a Key Chemosensory Signal Responsible for the Bruce Effect in Mice. Curr Biol CB. 2017;27: 3197–3201.e3. doi: 10.1016/j.cub.2017.09.013 29033330
71. Ferrero DM, Moeller LM, Osakada T, Horio N, Li Q, Roy DS, et al. A juvenile mouse pheromone inhibits sexual behaviour through the vomeronasal system. Nature. 2013;502: 368–371. doi: 10.1038/nature12579 24089208
72. Kimoto H, Sato K, Nodari F, Haga S, Holy TE, Touhara K. Sex- and strain-specific expression and vomeronasal activity of mouse ESP family peptides. Curr Biol CB. 2007;17: 1879–1884. doi: 10.1016/j.cub.2007.09.042 17935991
73. Kimoto H, Haga S, Sato K, Touhara K. Sex-specific peptides from exocrine glands stimulate mouse vomeronasal sensory neurons. Nature. 2005;437: 898–901. doi: 10.1038/nature04033 16208374
74. Young JM, Massa HF, Hsu L, Trask BJ. Extreme variability among mammalian V1R gene families. Genome Res. 2010;20: 10–18. doi: 10.1101/gr.098913.109 19952141
75. Ibarra-Soria X, Levitin MO, Logan DW. The genomic basis of vomeronasal-mediated behaviour. Mamm Genome Off J Int Mamm Genome Soc. 2014;25: 75–86. doi: 10.1007/s00335-013-9463-1 23884334
76. Glinka ME, Samuels BA, Diodato A, Teillon J, Feng Mei D, Shykind BM, et al. Olfactory deficits cause anxiety-like behaviors in mice. J Neurosci Off J Soc Neurosci. 2012;32: 6718–6725. doi: 10.1523/JNEUROSCI.4287-11.2012 22573694
77. Chen WV, Alvarez FJ, Lefebvre JL, Friedman B, Nwakeze C, Geiman E, et al. Functional significance of isoform diversification in the protocadherin gamma gene cluster. Neuron. 2012;75: 402–409. doi: 10.1016/j.neuron.2012.06.039 22884324
78. Zechner U, Wilda M, Kehrer-Sawatzki H, Vogel W, Fundele R, Hameister H. A high density of X-linked genes for general cognitive ability: a run-away process shaping human evolution? Trends Genet TIG. 2001;17: 697–701. doi: 10.1016/s0168-9525(01)02446-5 11718922
79. Davies W, Isles A, Smith R, Karunadasa D, Burrmann D, Humby T, et al. Xlr3b is a new imprinted candidate for X-linked parent-of-origin effects on cognitive function in mice. Nat Genet. 2005;37: 625–629. doi: 10.1038/ng1577 15908950
80. Burgoyne RD. Neuronal calcium sensor proteins: generating diversity in neuronal Ca2+ signalling. Nat Rev Neurosci. 2007;8: 182–193. doi: 10.1038/nrn2093 17311005
81. Wang W, Zhong Q, Teng L, Bhatnagar N, Sharma B, Zhang X, et al. Mutations that disrupt PHOXB interaction with the neuronal calcium sensor HPCAL1 impede cellular differentiation in neuroblastoma. Oncogene. 2014;33: 3316–3324. doi: 10.1038/onc.2013.290 23873030
82. Geppetti P, Veldhuis NA, Lieu T, Bunnett NW. G Protein-Coupled Receptors: Dynamic Machines for Signaling Pain and Itch. Neuron. 2015;88: 635–649. doi: 10.1016/j.neuron.2015.11.001 26590341
83. Subramanian V, Crabtree B, Acharya KR. Human angiogenin is a neuroprotective factor and amyotrophic lateral sclerosis associated angiogenin variants affect neurite extension/pathfinding and survival of motor neurons. Hum Mol Genet. 2008;17: 130–149. doi: 10.1093/hmg/ddm290 17916583
84. Götz R, Karch C, Digby MR, Troppmair J, Rapp UR, Sendtner M. The neuronal apoptosis inhibitory protein suppresses neuronal differentiation and apoptosis in PC12 cells. Hum Mol Genet. 2000;9: 2479–2489. doi: 10.1093/hmg/9.17.2479 11030753
85. Firman RC, Gasparini C, Manier MK, Pizzari T. Postmating Female Control: 20 Years of Cryptic Female Choice. Trends Ecol Evol. 2017;32: 368–382. doi: 10.1016/j.tree.2017.02.010 28318651
86. Civetta A. Positive selection within sperm-egg adhesion domains of fertilin: an ADAM gene with a potential role in fertilization. Mol Biol Evol. 2003;20: 21–29. doi: 10.1093/molbev/msg002 12519902
87. Spiess A-N, Walther N, Müller N, Balvers M, Hansis C, Ivell R. SPEER—a new family of testis-specific genes from the mouse. Biol Reprod. 2003;68: 2044–2054. doi: 10.1095/biolreprod.102.011593 12606357
88. Moore T, Dveksler GS. Pregnancy-specific glycoproteins: complex gene families regulating maternal-fetal interactions. Int J Dev Biol. 2014;58: 273–280. doi: 10.1387/ijdb.130329gd 25023693
89. Motrán CC, Díaz FL, Gruppi A, Slavin D, Chatton B, Bocco JL. Human pregnancy-specific glycoprotein 1a (PSG1a) induces alternative activation in human and mouse monocytes and suppresses the accessory cell-dependent T cell proliferation. J Leukoc Biol. 2002;72: 512–521. 12223519
90. Wu D-D, Irwin DM, Zhang Y-P. Molecular evolution of the keratin associated protein gene family in mammals, role in the evolution of mammalian hair. BMC Evol Biol. 2008;8: 241. doi: 10.1186/1471-2148-8-241 18721477
91. Imbeault M, Helleboid P-Y, Trono D. KRAB zinc-finger proteins contribute to the evolution of gene regulatory networks. Nature. 2017;543: 550–554. doi: 10.1038/nature21683 28273063
92. Morran LT, Schmidt OG, Gelarden IA, Parrish RC, Lively CM. Running with the Red Queen: Host-Parasite Coevolution Selects for Biparental Sex. Science. 2011;333: 216–218. doi: 10.1126/science.1206360 21737739
93. Axelrod R, Hammond RA, Grafen A. Altruism via kin-selection strategies that rely on arbitrary tags with which they coevolve. Evol Int J Org Evol. 2004;58: 1833–1838.
94. Sherborne AL, Thom MD, Paterson S, Jury F, Ollier WER, Stockley P, et al. The genetic basis of inbreeding avoidance in house mice. Curr Biol CB. 2007;17: 2061–2066. doi: 10.1016/j.cub.2007.10.041 17997307
95. Didion JP, Morgan AP, Clayshulte AM-F, Mcmullan RC, Yadgary L, Petkov PM, et al. A multi-megabase copy number gain causes maternal transmission ratio distortion on mouse chromosome 2. PLoS Genet. 2015;11: e1004850. doi: 10.1371/journal.pgen.1004850 25679959
96. Didion JP, Morgan AP, Yadgary L, Bell TA, McMullan RC, Ortiz de Solorzano L, et al. R2d2 Drives Selfish Sweeps in the House Mouse. Mol Biol Evol. 2016;33: 1381–1395. doi: 10.1093/molbev/msw036 26882987
97. Gordon D, Huddleston J, Chaisson MJP, Hill CM, Kronenberg ZN, Munson KM, et al. Long-read sequence assembly of the gorilla genome. Science. 2016;352: aae0344. doi: 10.1126/science.aae0344 27034376
98. Trachtulec Z, Vlcek C, Mihola O, Gregorova S, Fotopulosova V, Forejt J. Fine Haplotype Structure of a Chromosome 17 Region in the Laboratory and Wild Mouse. Genetics. 2008;178: 1777–1784. doi: 10.1534/genetics.107.082404 18245833
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2019 Číslo 11
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- The genetic architecture of helminth-specific immune responses in a wild population of Soay sheep (Ovis aries)
- A circadian output center controlling feeding:Fasting rhythms in Drosophila
- AMPK regulates ESCRT-dependent microautophagy of proteasomes concomitant with proteasome storage granule assembly during glucose starvation
- Chromatin dynamics enable transcriptional rhythms in the cnidarian Nematostella vectensis