Energy Density, Portion Size, and Eating Occasions: Contributions to Increased Energy Intake in the United States, 1977–2006
Background:
Competing theories attempt to explain changes in total energy (TE) intake; however, a rigorous, comprehensive examination of these explanations has not been undertaken. Our objective was to examine the relative contribution of energy density (ED), portion size (PS), and the number of eating/drinking occasions (EOs) to changes in daily TE.
Methods and Findings:
Using cross-sectional nationally representative data from the Nationwide Food Consumption Survey (1977–78), Continuing Survey of Food Intakes of Individuals (1989–91), and National Health and Nutrition Examination Surveys (1994–98 and 2003–06) for adults (aged ≥19 y), we mathematically decompose TE (kcal/d) to understand the relative contributions of each component—PS (grams/EO), ED (kcal/g/EO) and EO(number)—to changes in TE over time. There was an increase in TE intake (+570 kcal/d) and the number of daily EOs (+1.1) between 1977–78 and 2003–06. The average PS increased between 1977–78 and 1994–98, then dropped slightly between 1994–98 and 2003–06, while the average ED remained steady between 1977–78 and 1989–91, then declined slightly between 1989–91 and 1994–98. Estimates from the decomposition statistical models suggest that between 1977–78 and 1989–91, annualized changes in PS contributed nearly 15 kcal/d/y to increases in TE, while changes in EO accounted for just 4 kcal/d/y. Between 1994–98 and 2003–06 changes in EO accounted for 39 kcal/d/y of increase and changes in PS accounted for 1 kcal/d/y of decline in the annualized change in TE.
Conclusions:
While all three components have contributed to some extent to 30-y changes in TE, changes in EO and PS have accounted for most of the change. These findings suggest a new focus for efforts to reduce energy imbalances in US adults.
: Please see later in the article for the Editors' Summary
Published in the journal:
Energy Density, Portion Size, and Eating Occasions: Contributions to Increased Energy Intake in the United States, 1977–2006. PLoS Med 8(6): e32767. doi:10.1371/journal.pmed.1001050
Category:
Research Article
doi:
https://doi.org/10.1371/journal.pmed.1001050
Summary
Background:
Competing theories attempt to explain changes in total energy (TE) intake; however, a rigorous, comprehensive examination of these explanations has not been undertaken. Our objective was to examine the relative contribution of energy density (ED), portion size (PS), and the number of eating/drinking occasions (EOs) to changes in daily TE.
Methods and Findings:
Using cross-sectional nationally representative data from the Nationwide Food Consumption Survey (1977–78), Continuing Survey of Food Intakes of Individuals (1989–91), and National Health and Nutrition Examination Surveys (1994–98 and 2003–06) for adults (aged ≥19 y), we mathematically decompose TE (kcal/d) to understand the relative contributions of each component—PS (grams/EO), ED (kcal/g/EO) and EO(number)—to changes in TE over time. There was an increase in TE intake (+570 kcal/d) and the number of daily EOs (+1.1) between 1977–78 and 2003–06. The average PS increased between 1977–78 and 1994–98, then dropped slightly between 1994–98 and 2003–06, while the average ED remained steady between 1977–78 and 1989–91, then declined slightly between 1989–91 and 1994–98. Estimates from the decomposition statistical models suggest that between 1977–78 and 1989–91, annualized changes in PS contributed nearly 15 kcal/d/y to increases in TE, while changes in EO accounted for just 4 kcal/d/y. Between 1994–98 and 2003–06 changes in EO accounted for 39 kcal/d/y of increase and changes in PS accounted for 1 kcal/d/y of decline in the annualized change in TE.
Conclusions:
While all three components have contributed to some extent to 30-y changes in TE, changes in EO and PS have accounted for most of the change. These findings suggest a new focus for efforts to reduce energy imbalances in US adults.
: Please see later in the article for the Editors' Summary
Introduction
In the context of the growing obesity epidemic [1], it has been suggested that increases in caloric availability and thus energy intake [2], irrespective of changes in physical activity, are enough to explain the observed increases in weight at the population level [3]. Theories about the causes of change in energy intake are numerous, but tend to focus on one of three areas: increases in the frequency of eating/drinking occasions (EOs) [4]–[6], especially snacking [7]; increases in the typical portion sizes (PSs) of foods and beverages [8]–[11]; or changes in the energy density (ED) of the foods consumed (termed “volumetrics” by Rolls and colleagues) [12]–[14].
Much of this research focuses on the effect of the ED or PSs of individual foods, or preload conditions [15],[16], on energy intake at a given meal The limited epidemiological work has been cross-sectional [17]. At least one study [18] also examined whether increasing PS has an effect beyond a single EO, reporting that increased PSs over 2 d resulted in increased energy intake and that the increase on day one was not compensated for on the second day [18]. Several studies have also confirmed that when individuals consume meals that are lower in ED, their daily energy intake is also lower [19]–[22]. Taken together these findings suggest that it is the total meal (combination of foods and beverages consumed at a given EO), not just individual foods consumed, that is important in determining total energy (TE) intake and should be the focus of research.
A small body of research has examined the combined effect of changes in both the ED and PS of foods with respect to energy intake [23]–[25], but to our knowledge similar research does not exist for the other possible combinations of ED, EO frequency, and PS, nor have these factors been examined all together in either large-scale epidemiological studies or clinical trials. Further, the research on PSs has focused mainly on separate foods and beverages (e.g., sugar-sweetened beverages or cheeseburgers), ignoring both their potential effect on each meal or snack occasion and the relationship of overall PSs of all other meals and snacks to daily totals.
To address this knowledge gap, in the present study we examine the relative contribution of changes in the frequency of EOs, PS for each EO, and ED for each EO to changes in TE intake using nationally representative samples of US adults between 1977 and 2006.
Methods
Study Population
Cross-sectional nationally representative dietary intake data of adults 19 y and older were taken from four US food surveys. United States Department of Agriculture (USDA) data came from respondents of the Nationwide Food Consumption Survey (NFCS) of 1977–78 (n = 17,464) and the Continuing Survey of Food Intakes of Individuals (CSFII) 1989–91 (n = 8,340) and 1994–96, 1998 (CSFII 1994–98, n = 9,460). We also combined two consecutive National Health and Nutrition Examination Survey (NHANES) surveys, 2003–04 and 2005–06, into a single analytic sample (NHANES 2003–06, n = 9,490). The USDA and NHANES surveys are based on stratified area probability samples of non-institutionalized US households in the 48 contiguous [26] or all 50 states [27]. Detailed information about each survey and its sampling design has been previously published [26]–[29], and a comparison of the sampling and 24-h recall intake methodologies can be found in Table S1. The study was approved by the Institutional Review Board at the University of North Carolina at Chapel Hill.
Dietary Data
The NFCS 1977–78 and CSFII 1989–91 surveys collected dietary intake data over three consecutive days using a single-interviewer-administered multiple-pass 24-h dietary recall followed by a self-administered 2-d diet record using methods developed by the USDA. Dietary data from these surveys consisted of all foods consumed at and away from home (24-h recall) and a comprehensive record of all foods eaten on the day of the interview and the following day (2-d record). This USDA dietary methodology was later integrated into the CSFII 1994–98 and NHANES 2003–06 surveys, which utilized two nonconsecutive days of interviewer-administered 24-h dietary recalls (3–10 d apart). In order to maintain consistency across studies we utilized the first day of available 24-h recall dietary data. We excluded all reported instances of water being consumed as a separate food item from all surveys, as this information was not collected in the same manner across exams. In the later NHANES exams, water (as a beverage) was probed for specifically, which resulted in a dramatic increase in the reported instances of water consumption.
Food and Beverage Definitions
Foods and beverages were defined and grouped according the UNC-CH food-grouping system [30]. Briefly, foods and beverages were grouped into 101 nutrient-based food groups (including 16 beverage groups) according to fat and fiber content. Because “dish” identifiers are not available in NHANES, it is not possible to accurately and confidently link foods consumed separately but which might constitute a single dish, e.g., milk and cereal consumed at the same EO. In instances such as this, cereal is identified as a food, while milk is identified as a beverage. Although it seems possible to make educated guesses about foods like milk and cereal, there are many more assumptions required to assign a single “food” status to something like milk consumed with macaroni and cheese. Therefore, in all cases where any beverage was consumed in the same EO as a food, the beverage is considered independent of the food. The UNC-CH food-grouping system has been used previously in studies of beverage [2],[31] and dietary intake [32],[33] specifically, as well as studies examining snacking [7],[34] and overall eating behaviors [35],[36].
Defining Eating Occasions
EOs, either meals or snacks, were self-defined by respondents in both the USDA and NHANES surveys. Meals were defined by the respondent as breakfast/brunch, lunch, and dinner/supper, while the snack category included those EOs defined by the respondent as “snack,” plus related snacking occasions (i.e., food and/or coffee/beverage breaks). All occasions that were identified as snacks but were consumed within 15 min of each other were combined into a single snacking event. Also, some people defined foods eaten at the same time as both a snack and a meal. As an example, suppose an individual reported consuming a sandwich and a bag of chips (eaten at the same time). This individual identified the sandwich as lunch and the chips as a snack. In instances where this occurred, both items were considered eaten as part of a single EO (lunch), rather than as two separate EOs (lunch and a snack).
Beverages consumed alone, and not identified as a meal, were considered snacks. The number of meals and snacks was then summed for each individual for a total number of EOs. All foods were assigned to a specific EO in 1977–78 and in 2003–06, while in the other two surveys 0.15% of food items were not assigned because they had neither an EO name nor a time associated with the EO. This method of assigning meals and snacks has been previously employed to study overall eating [37] and snacking behavior [7] in a sample of US adults.
Total Energy, Portion Size, and Energy Density
We calculated per EO measures for energy intake, PS, and ED. For each individual, the daily total gram weight (PS) and total daily energy of all foods consumed were summed over a 24-h period and divided by the total number of EOs as a measure of per EO PS and per EO energy. ED was then generated by dividing energy (per EO) by PS (per EO). This was done for foods and beverages separately.
Decomposition Algorithm
Mathematical decomposition has been applied to many measures of changes in health and behavior (e.g., mortality and fertility rates [38]–[40]). We define total daily energy intake (TE) (kcal/d) as the number of daily EOs multiplied by the average PS (grams) per EO multiplied by the average ED (kcal/g) of each EO, as in the following equation:(1)
Using this equation, we then estimate the proportionate contribution (a partial derivative) of changes in each of these components to overall changes in total daily energy intake by taking the derivative of changes in TE with respect to changes in PS, ED, and the number of EOs, holding the other two factors constant at their mean [38]. Briefly, for each component of total daily energy, the change between two time points (e.g., 1977–78 and 1989–91) is multiplied by the average of the other two components. This derivative is calculated for each component (PS, ED, and EOs) and the values summed to generate the full derivative for change in TE intake, as shown in the following equation:(2)
To annualize change, these values were then divided by the number of years between each wave of data collection (i.e., results comparing 1977–78 to 1989–91 were divided by 12.5 [mean year points: 1990–1977.5 = 12.5]). The resulting output is interpreted as the annual change in energy (kcal/d/y) that is attributed to changes in PS, ED, and EOs, with sign indicating the direction of change.
Statistical Analysis
All analyses were conducted using Stata 11 (StataCorp). We used survey commands to account for survey design: weighting and clustering. All values were adjusted to the 1977–78 age–gender–race/ethnicity sample distribution and are reported as mean (or percent) and standard error. Values were then annualized to account for the unequal spacing within and between exam years. To test for statistical differences in sample characteristics (not PS, ED, EO, or TE) comparing all years to each other, we used independent two-sided t tests with p≤0.05 set for statistical significance using the Bonferroni correction for multiple comparisons.
Results
Overall
The sample population in 1977–78 was significantly younger and had a higher percentage of non-Hispanic white males with 12 or fewer years of education compared to the later exam years. The population in 1977–78 also had a lower percentage of individuals of Hispanic and “non-Hispanic other” race/ethnicity and a lower percentage of persons living at or above the 350% poverty income ratio (Table 1).
The average PS per EO increased from 1977–78 to 1989–91 (+49 g) and again from 1989–91 to 1994–98 (+18 g), before declining slightly in 2003–06 (−2 g). The average ED per EO did not change between 1977–78 and 1989–91, then declined slightly between 1989–91 and 1994–98 (−0.02 kcal/g/EO). The total number of daily EOs increased between each exam period, from 3.8 EO/d in 1977–78 to 4.9 EO/d in 2003–06 (Table 1).
Total daily energy intake increased by 570 kcal/d between 1977–78 and 2003–06 (Table 1). Between each exam period, there were increasingly greater differences in predicted TE intake, with the largest increase occurring in the last decade (1994–98 to 2003–06, +229 kcal/d).
By Food and Beverage
The average PS per EO of beverages increased (1977–78 to 2003–06, +97 g) between each exam period, whereas the average PS per EO of foods increased between 1977–78 and 1998–91 (+11 g), then declined to its lowest value in 2003–06 (Figure 1A). ED, on the other hand, remained relatively stable between exam years (Figure 1B). This is especially true for beverages, which showed virtually no change in ED per EO between 1977–78 and 2003–06. The ED of foods showed more fluctuation, hovering between 1.83 and 1.89 kcal/g/EO until 2003–06, when the average ED per EO increased to 2.05 kcal/g/EO (Figure 1B). It is important to keep in mind, however, that although there were larger changes in the PS of beverages, changes in the PS of foods still had a greater impact on energy intake. For example, between 1977–78 and 2003–06, changes in food energy provided an additional 367 kcal/d while changes in beverage energy provided only an additional 203 kcal/d (data not shown).
Decomposing Change in Total Energy
Over the 30-y period, all three components (ED, PS, and EO) contributed to a greater or lesser extent to changes in TE intake (Figure 2). For example, between 1977–78 and 1989–91, increases in the number of EOs accounted for just 4 kcal/d/y of the annualized increase in TE intake; this jumped to 37 kcal/d/y between 1989–91 and 1994–98 and 39 kcal/d/y between 1994–98 and 2003–06 (Figure 2). Increases in PS accounted for the largest energy change between 1977–78 and 1989–91 (15 kcal/d/y), but PS's contribution to annualized change in TE dropped between 1989–91 and 1994–98 (Figure 2). Between 1994–98 and 2003–06, PS accounted for −1 kcal/d/y of the change in TE, which means that decreases in PS (and ED) offset increases in the number of EO over this time period. Over time, changes in ED have partially offset changes in the other two variables, accounting for −1 kcal/d/y of the observed change in TE intake between 1977–78 and 1989–91 and −11 kcal/d/y of the observed change in TE between 1989–91 and 1994–98. Looking at changes over the full 30-y period, the largest contributor to change in TE intake was change in the frequency of EO, accounting for 22 kcal/d/y of the observed annualized change in TE.
Discussion
To our knowledge this is the first study to examine the combined contribution of changes in PS, ED, and the frequency of EOs to changes in total daily energy intake in any free-living population. Annualized daily energy intake for US adults increased by 28 kcal/d/y between 1977–78 and 2003–06. Among adults in the US, we show that for the full period between 1977 and 2006 the largest contributor to change in annualized total daily energy intake was change in the number of EOs, accounting for roughly 22 kcal/d/y. Over the full time period, changes in PS accounted for the next largest proportion, at 10 kcal/d/y, and our results suggest that the ED of the average EO has actually decreased, offsetting increases in PS and the number of EOs and accounting for roughly −4 kcal/d/y of the annualized change in TE. It is important to note that this is a macro level analysis; these results do not negate the issue of how individual diet and weight change are affected by ED, PS, or eating frequency. However, to the extent that all energy intake is equal, and has an equal impact on energy imbalance, this approach to studying changes in energy intake helps guide us to interventions to reduce intake.
Our findings are in line with more detailed EO-specific research from our group, which documents increases in the frequency of reported EOs among US adults [37]. At the 50th percentile, the average number of EOs increased from 3.5/d to 5.0/d, a change that was accompanied by an increase of 400 kcal/d from meals and snacks combined [37].
The supersizing of portions of various food and beverage items has been the subject of much scientific research and both scientific and popular books and films [41]–[45]. Our group has shown actual consumption of key food and beverage portions increased across all EOs [46]. Other research shows similar increases for selected foods in the last decade, although much of this research has focused on specific food items [42],[47] (i.e., soft drinks, hamburgers, and pizza) as opposed to changes in total meal size. Rolls et al. [23] have also studied combinations of water and food at meals. They report that decreasing the ED (and increasing the volume) of a meal preload by adding water results in a reduction of energy intake at lunch; giving the equivalent amount of water as a beverage separate from a meal did not affect satiety and was associated with greater energy intake compared to the condition in which water was incorporated into the meal [23].
The present study employs just one possible method of decomposition; utilizing the fact that daily energy intake can be defined as the number of EOs (number) multiplied by PS (grams) and ED (kcal/g) to calculate the partial and full derivatives of each of these components as contributors to overall change. Decomposing change has been previously employed, especially in the sociological literature (i.e., examining changes in fertility rates), and other methods exist [39],[40],[48],[49] and should be examined. In addition, the use of nationally representative cross-sectional dietary data has its limitations, particularly for trend analyses. Perhaps the most notable limitation is the introduction of the five-step multiple-pass method of 24-h recall collection, which was implemented in the NHANES 2003–04 (and subsequent 2005–06) survey. This differs from previous USDA methodologies, and could result in more accurate intake reported by individuals in later years since there is additional prompting by the interviewer. Since there are no bridging studies to determine the extent to which these methodological shifts may have resulted in systematic changes in individuals' reporting, it is not possible to know whether such confounding by time exists. Bridging studies conducted as a result of methodological shifts between the 1970s and 1980s, however, found that shifts in TE and food composition did not significantly impact results [50],[51].
Additionally, in NHANES 2003–04 and 2005–06, respondents were specifically asked if they consumed water (e.g., it was added as a food item). This probing resulted in the reporting of 26,000 “water only” EOs in 2003–06 (approximately 24% of reported beverage consumption; data not shown), an increase compared to previous years, which had 200–300 observations each (range 0.06%–0.02% of reported beverage consumption; data not shown). This survey change had significant implications for the calculation of ED and the number of EOs specifically, and inclusion dramatically alters our decomposition results between 1994–98 and 2003–06, inflating the number of reported EOs and decreasing the ED of the average EO. Since this additional probing was not consistent between exams or across exam years, we excluded these additional water-only EOs to maintain consistency across time.
Another important limitation with using cross-sectional data is the possibility that results are confounded by population-level changes in factors that might influence our relationship of interest. Although we can at least partially control for some of these changes (through age, gender, and race/ethnic standardization to the earliest time point), we are unable to adjust for others (such as physical activity or the prevalence of chronic disease) because of a lack of detailed and comparable measures over time. Finally, we were limited by the possibility of increasing underestimates of actual food intake over time. Scholars have shown that adults tend to underestimate TE intake, particularly from “junk foods” and other foods that are considered to have negative health connotations [52]–[55]. This is particularly true for overweight individuals [56],[57].
Using cross-sectional nationally representative samples of US adults, this study documents marked increases in the number and PSs of EOs and steady overall ED per EO over the past 30 y. During the most recent period, from 1994–98 to 2003–06, there were large increases in the number of EOs, but, equally important, there were no changes in the average ED of each EO. The results suggest that as contributors to increased caloric intake over both this most recent decade and over the full 30-y period, increased EO contributed significantly more to the shift in TE intake than the other two components, although PS positively and ED negatively contributed to some extent. To the extent that energy imbalance as a result of increased energy intake contributes to obesity and its associated co-morbidities, prevention efforts should focus more on reducing EOs as a way to reduce energy imbalance.
Supporting Information
Zdroje
1. FlegalKMCarrollMDOgdenCLCurtinLR 2010 Prevalence and trends in obesity among US adults, 1999–2008. JAMA 303 235 241
2. DuffeyKPopkinB 2007 Shifts in patterns and consumption of beverages between 1965 and 2002. Obes Res 15 2739 2747
3. SwinburnBSacksGRavussinE 2009 Increased food energy supply is more than sufficient to explain the US epidemic of obesity. Am J Clin Nutr 90 1453 1456
4. KantAKGraubardBI 2006 Secular trends in patterns of self-reported food consumption of adult Americans: NHANES 1971–1975 to NHANES 1999–2002. Am J Clin Nutr 84 1215 1223
5. PopkinBMDuffeyKJ 2009 Does hunger and satiety drive eating anymore? Increasing eating occasions and decreasing time between eating occasions in the United States. Am J Clin Nutr 91 1 6
6. BellisleFMcDevittRPrenticeAM 1997 Meal frequency and energy balance. Br J Nutr 77 Suppl 1 S57 S70
7. PiernasCPopkinBM 2010 Snacking increased among U.S. adults between 1977 and 2006. J Nutr 140 325 332
8. Smiciklas-WrightHMitchellDCMickleSJGoldmanJDCookA 2003 Foods commonly eaten in the United States, 1989–1991 and 1994–1996: are portion sizes changing? J Am Diet Assoc 103 41 47
9. NielsenSPopkinB 2003 Patterns and trends in portion sizes, 1977–1998. JAMA 289 450 453
10. YoungLRNestleM 2002 The contribution of expanding portion sizes to the US obesity epidemic. Am J Public Health 92 246 249
11. YoungLRNestleM 2003 Expanding portion sizes in the US marketplace: implications for nutrition counseling. J Am Diet Assoc 103 231 234
12. RollsBJDrewnowskiALedikweJH 2005 Changing the energy density of the diet as a strategy for weight management. J Am Diet Assoc 105 S98 S103
13. RollsBJBarnettRobertA 1999 Volumetrics: feel full on fewer calories New York City HarperCollins
14. RollsBJ 2010 Plenary Lecture 1: dietary strategies for the prevention and treatment of obesity. Proc Nutr Soc 69 70 79
15. FloodJERoeLSRollsBJ 2006 The effect of increased beverage portion size on energy intake at a meal. J Am Diet Assoc 106 1984 1990; discussion 1990–1981
16. Ello-MartinJALedikweJHRollsBJ 2005 The influence of food portion size and energy density on energy intake: implications for weight management. Am J Clin Nutr 82 236S 241S
17. LedikweJHBlanckHMKhanLKSerdulaMKSeymourJD 2005 Dietary energy density determined by eight calculation methods in a nationally representative United States population. J Nutr 135 273 278
18. RollsBJRoeLSMeengsJS 2006 Larger portion sizes lead to a sustained increase in energy intake over 2 days. J Am Diet Assoc 106 543 549
19. BellEACastellanosVHPelkmanCLThorwartMLRollsBJ 1998 Energy density of foods affects energy intake in normal-weight women. Am J Clin Nutr 67 412 420
20. BellEARollsBJ 2001 Energy density of foods affects energy intake across multiple levels of fat content in lean and obese women. Am J Clin Nutr 73 1010 1018
21. RollsBJBellEACastellanosVHChowMPelkmanCL 1999 Energy density but not fat content of foods affected energy intake in lean and obese women. Am J Clin Nutr 69 863 871
22. StubbsRJJohnstoneAMHarbronCGReidC 1998 Covert manipulation of energy density of high carbohydrate diets in ‘pseudo free-living’ humans. Int J Obes Relat Metab Disord 22 885 892
23. RollsBJBellEAThorwartML 1999 Water incorporated into a food but not served with a food decreases energy intake in lean women. Am J Clin Nutr 70 448 455
24. KralTVRollsBJ 2004 Energy density and portion size: their independent and combined effects on energy intake. Physiol Behav 82 131 138
25. RollsBJRoeLSMeengsJS 2006 Reductions in portion size and energy density of foods are additive and lead to sustained decreases in energy intake. Am J Clin Nutr 83 11 17
26. RizekR 1978 The 1977–78 Nationwide Food Consumption Survey. Fam Econ Rev 4 3 7
27. US Department of Agriculture Agricultural Research Services 2006 November Dietary intake data: what we eat in America, NHANES 2003–2004. Available: http://www.ars.usda.gov/SP2UserFiles/Place/12355000/pdf/0304/wweia_2003_2004_data.pdf. Accessed 29 March 2010
28. US Department of Agriculture Human Nutrition Information Service 1993 January The continuing survey of food intakes by individuals and the diet and health knowledge survey 1991: survey operations report. Available: http://www.ars.usda.gov/SP2UserFiles/Place/12355000/pdf/8991/csfii91_sor.pdf. Accessed 29 March 2010
29. US Department of Agriculture Agricultural Research Services 2008 July Dietary intake data: what we eat in America, NHANES 2005–2006. Available: http://www.ars.usda.gov/SP2UserFiles/Place/12355000/pdf/0506/wweia_2005_2006_data.pdf. Accessed 29 March 2010
30. PopkinBMHainesPSSiega-RizAM 1999 Dietary patterns and trends in the United States: the UNC-CH approach. Appetite 32 8 14
31. NielsenSJPopkinBM 2004 Changes in beverage intake between 1977 and 2001. Am J Prev Med 27 205 210
32. DuffeyKJPopkinBM 2006 Adults with healthier dietary patterns have healthier beverage patterns. J Nutr 136 2901 2907
33. DuffeyKGordon-LarsenPAyalaGXPopkinBM 2008 Birthplace is associated with more adverse dietary profiles for US vs. foreign born Latino adults. J Nutr 138 2428 2435
34. PiernasCPopkinBM 2010 Trends in snacking among U.S. children. Health Aff (Millwood) 29 398 404
35. NielsenSSiega-RizAPopkinB 2002 Trends in food locations and sources among adolescents and young adults. Prev Med 35 107 113
36. NielsenSSiega-RizAPopkinB 2002 Trends in energy intake in the U.S. between 1977 and 1996: similar shifts seen across age groups. Obes Res 10 370 378
37. PopkinBMDuffeyKJ 2010 Does hunger and satiety drive eating anymore? Increasing eating occasions and decreasing time between eating occasions in the United States. Am J Clin Nutr 91 1342 1347
38. LindstormDPWoubalemZ 2003 The demographic components of fertility decline in Addis Ababa, Ethiopia: a decomposition analysis. Genus 59 147 158
39. SmithHMorganSPKoropeckyj-CoxT 1996 A decomposition of trends in the nonmarital fertility ratios of blacks and whites in the United States, 1960–1992. Demography 33 141 151
40. Das GuptaP 1978 A general method of decomposing a difference between two rates into several components. Demography 15 99 112
41. SpurlockM 2006 Don't eat this book: fast food and the supersizing of America Berkeley (California) Berkley Trade 320
42. WansinkBPainterJENorthJ 2005 Bottomless bowls: Why visual cues of portion size may influence intake. Obes Res 13 93 100
43. DilibertiNBordiPLConklinMTRoeLSRollsBJ 2004 Increased portion size leads to increased energy intake in a restaurant meal. Obes Res 12 562 568
44. RaynorHAVan WalleghenELNiemeierHButrynMLWingRR 2009 Do food provisions packaged in single-servings reduce energy intake at breakfast during a brief behavioral weight-loss intervention? J Am Diet Assoc 109 1922 1925
45. StroebeleNOgdenLGHillJO 2009 Do calorie-controlled portion sizes of snacks reduce energy intake? Appetite 52 793 796
46. NielsenSJPopkinBM 2003 Patterns and trends in food portion sizes, 1977–1998. JAMA 289 450 453
47. WansinkB 2006 What really determines what we eat. The hidden truth. Diabetes Self Manag 23 44, 47 48, 51
48. ArriagaEE 1984 Measuring and explaining the change in life expectancies. Demography 21 83 96
49. VaupelJWRomoVC 2003 Decomposing change in life expectancy: A bouquet of formulas in honor of Nathan Keyfitz's 90th Birthday. Demography 40 201 216
50. GuentherPPerloffBP 1990 Effects of procedural differences between 1977 and 1987 in the Nationwide Food Consumption Survey on estimates of food and nutrient intakes: results of the USDA 1988 Bridging Study Washington (District of Columbia) US Department of Agriculture Human Nutrition Information Service
51. GuentherPMPerloffBPVizioliTLJr 1994 Separating fact from artifact in changes in nutrient intake over time. J Am Diet Assoc 94 270 275
52. HeitmannBLLissnerLOslerM 2000 Do we eat less fat, or just report so? Int J Obes Relat Metab Disord 24 435 442
53. SchoellerDA 1995 Limitations in the assessment of dietary energy intake by self-report. Metabolism 44 18 22
54. SchatzkinAKipnisVCarrollRJMidthuneDSubarAF 2003 A comparison of a food frequency questionnaire with a 24-hour recall for use in an epidemiological cohort study: results from the biomarker-based Observing Protein and Energy Nutrition (OPEN) study. Int J Epidemiol 32 1054 1062
55. TrabulsiJTroianoRPSubarAFSharbaughCKipnisV 2003 Precision of the doubly labeled water method in a large-scale application: evaluation of a streamlined-dosing protocol in the Observing Protein and Energy Nutrition (OPEN) study. Eur J Clin Nutr 57 1370 1377
56. BaileyRLMitchellDCMillerCSmiciklas-WrightH 2007 Assessing the effect of underreporting energy intake on dietary patterns and weight status. J Am Diet Assoc 107 64 71
57. HeitmannBLLissnerL 1995 Dietary underreporting by obese individuals—is it specific or non-specific? BMJ 311 986 989
Štítky
Interné lekárstvoČlánok vyšiel v časopise
PLOS Medicine
2011 Číslo 6
- Statinová intolerance
- Hydroresponzivní krytí v epitelizační fázi hojení rány
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Metamizol v liečbe pooperačnej bolesti u detí do 6 rokov veku
- Co dělat při intoleranci statinů?
Najčítanejšie v tomto čísle
- Mapping the Risk of Anaemia in Preschool-Age Children: The Contribution of Malnutrition, Malaria, and Helminth Infections in West Africa
- More and Better Information to Tackle HIV Epidemics: Towards Improved HIV Incidence Assays
- Migration and "Low-Skilled" Workers in Destination Countries
- Energy Density, Portion Size, and Eating Occasions: Contributions to Increased Energy Intake in the United States, 1977–2006