#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Evaluation of Coseasonality of Influenza and Invasive Pneumococcal Disease: Results from Prospective Surveillance


Background:
The wintertime co-occurrence of peaks in influenza and invasive pneumococcal disease (IPD) is well documented, but how and whether wintertime peaks caused by these two pathogens are causally related is still uncertain. We aimed to investigate the relationship between influenza infection and IPD in Ontario, Canada, using several complementary methodological tools.

Methods and Findings:
We evaluated a total number of 38,501 positive influenza tests in Central Ontario and 6,191 episodes of IPD in the Toronto/Peel area, Ontario, Canada, between 1 January 1995 and 3 October 2009, reported through population-based surveillance. We assessed the relationship between the seasonal wave forms for influenza and IPD using fast Fourier transforms in order to examine the relationship between these two pathogens over yearly timescales. We also used three complementary statistical methods (time-series methods, negative binomial regression, and case-crossover methods) to evaluate the short-term effect of influenza dynamics on pneumococcal risk. Annual periodicity with wintertime peaks could be demonstrated for IPD, whereas periodicity for influenza was less regular. As for long-term effects, phase and amplitude terms of pneumococcal and influenza seasonal sine waves were not correlated and meta-analysis confirmed significant heterogeneity of influenza, but not pneumococcal phase terms. In contrast, influenza was shown to Granger-cause pneumococcal disease. A short-term association between IPD and influenza could be demonstrated for 1-week lags in both case-crossover (odds ratio [95% confidence interval] for one case of IPD per 100 influenza cases  = 1.10 [1.02–1.18]) and negative binomial regression analysis (incidence rate ratio [95% confidence interval] for one case of IPD per 100 influenza cases  = 1.09 [1.05–1.14]).

Conclusions:
Our data support the hypothesis that influenza influences bacterial disease incidence by enhancing short-term risk of invasion in colonized individuals. The absence of correlation between seasonal waveforms, on the other hand, suggests that bacterial disease transmission is affected to a lesser extent.

: Please see later in the article for the Editors' Summary


Vyšlo v časopise: Evaluation of Coseasonality of Influenza and Invasive Pneumococcal Disease: Results from Prospective Surveillance. PLoS Med 8(6): e32767. doi:10.1371/journal.pmed.1001042
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pmed.1001042

Souhrn

Background:
The wintertime co-occurrence of peaks in influenza and invasive pneumococcal disease (IPD) is well documented, but how and whether wintertime peaks caused by these two pathogens are causally related is still uncertain. We aimed to investigate the relationship between influenza infection and IPD in Ontario, Canada, using several complementary methodological tools.

Methods and Findings:
We evaluated a total number of 38,501 positive influenza tests in Central Ontario and 6,191 episodes of IPD in the Toronto/Peel area, Ontario, Canada, between 1 January 1995 and 3 October 2009, reported through population-based surveillance. We assessed the relationship between the seasonal wave forms for influenza and IPD using fast Fourier transforms in order to examine the relationship between these two pathogens over yearly timescales. We also used three complementary statistical methods (time-series methods, negative binomial regression, and case-crossover methods) to evaluate the short-term effect of influenza dynamics on pneumococcal risk. Annual periodicity with wintertime peaks could be demonstrated for IPD, whereas periodicity for influenza was less regular. As for long-term effects, phase and amplitude terms of pneumococcal and influenza seasonal sine waves were not correlated and meta-analysis confirmed significant heterogeneity of influenza, but not pneumococcal phase terms. In contrast, influenza was shown to Granger-cause pneumococcal disease. A short-term association between IPD and influenza could be demonstrated for 1-week lags in both case-crossover (odds ratio [95% confidence interval] for one case of IPD per 100 influenza cases  = 1.10 [1.02–1.18]) and negative binomial regression analysis (incidence rate ratio [95% confidence interval] for one case of IPD per 100 influenza cases  = 1.09 [1.05–1.14]).

Conclusions:
Our data support the hypothesis that influenza influences bacterial disease incidence by enhancing short-term risk of invasion in colonized individuals. The absence of correlation between seasonal waveforms, on the other hand, suggests that bacterial disease transmission is affected to a lesser extent.

: Please see later in the article for the Editors' Summary


Zdroje

1. DushoffJPlotkinJBLevinSAEarnDJ 2004 Dynamical resonance can account for seasonality of influenza epiemics. Proc Natl Acad Sci U S A 101 16915 16916

2. FismanDN 2007 Seasonality of infectious diseases. Annu Rev Public Health 28 127 143

3. KimPEMusherDMGlezenWPRodriguez-BarradasMCNahmWK 1996 Association of invasive pneumococcal disease with season, atmospheric conditions, air pollution, and the isolation of respiratory viruses. Clin Infect Dis 22 100 106

4. TalbotTRPoehlingKAHartertTVArbogastPGHalasaNB 2005 Seasonality of invasive pneumococcal disease: temporal relation to documented influenza and respiratory syncytial viral circulation. Am J Med 118 285 291

5. WatsonMGilmourRMenziesRFersonMMcIntyreP 2006 The association of respiratory viruses, temperature, and other climatic parameters with the incidence of invasive pneumococcal disease in Sydney, Australia. Clin Infect Dis 42 211 215

6. DanemanNMcGeerAGreenKLowDE 2006 Macrolide resistance in bacteremic pneumococcal disease: implications for patient management. Clin Infect Dis 43 432 438

7. McGeerAGreenKAPlevneshiAShigayevaASiddiqiN 2007 Antiviral therapy and outcomes of influenza requiring hospitalization in Ontario, Canada. Clin Infect Dis 45 1568 1575

8. VanderkooiOGLowDEGreenKPowisJEMcGeerA 2005 Predicting antimicrobial resistance in invasive pneumococcal infections. Clin Infect Dis 40 1288 1297

9. Ministry of the Environment (Canada) Historical data. Available: http://www.airqualityontario.com/reports/historical_data.cfm. Accessed 17 September 2010

10. FioletovVEKimlinMGKrotkovNMcArthurLJBKerrJB 2004 UV index climatology over the United States and Canada from ground-based and satellite estimates. J Geophys Res 109 D22308

11. ScharlemannJPBenzDHaySIPurseBVTatemAJ 2008 Global data for ecology and epidemiology: a novel algorithm for temporal Fourier processing MODIS data. PloS One 3 e1408 doi:10.1371/journal.pone.0001408

12. DelucchiK 1993 On the use and misuse of chi-square. KerenGLewisC A handbook for data analysis in the behavioral sciences: statistical issues London Routledge 295 320

13. AfifiAAKotlermanJBEttnerSLCowanM 2007 Methods for improving regression analysis for skewed continuous or counted responses. Annu Rev Public Health 28 95 111

14. HosmerDWLemeshowS 1989 Applied logistic regression. New York Joh Wiley&Sons, Inc

15. WhiteANNgVSpainCVJohnsonCCKinlinLM 2009 Let the sun shine in: effects of ultraviolet radiation on invasive pneumococcal disease risk in Philadelphia, Pennsylvania. BMC Infect Dis 9 196

16. MurdochDRJenningsLC 2009 Association of respiratory virus activity and environmental factors with the incidence of invasive pneumococcal disease. J Infect 58 37 46

17. DowellSFHoMS 2004 Seasonality of infectious diseases and severe acute respiratory syndrome-what we don't know can hurt us. Lancet Infect Dis 4 704 708

18. HarrellFE 2001 Overview of maximum likelihood estimation. New York Springer Regression modeling strategies with applications to linear models,logistic regression and survival models

19. WoodwardM 2005 Confounding and interaction. epidemiology: study design and data analysis Boca Raton, (Florida) Chapman & Hall/CRC 163 214

20. GrangerC 1969 Investigating causal relations by econometric methods and cross-spectral methods. Econometrica 37 424 438

21. FismanDNLimSWelleniusGAJohnsonCBritzP 2005 It's not the heat, it's the humidity: wet weather increases legionellosis risk in the greater Philadelphia metropolitan area. J Infect Dis 192 2066 2073

22. WhiteANNgVSpainCVJohnsonCCKinlinLM 2009 Let the sun shine in: effects of ultraviolet radiation on invasive pneumococcal disease risk in Philadelphia, Pennsylvania. BMC Infect Dis 9 196

23. JanesHSheppardLLumleyT 2005 Case-crossover analyses of air pollution exposure data: referent selection strategies and their implications for bias. Epidemiology 16 717 726

24. LevyDLumleyTSheppardLKaufmanJCheckowayH 2001 Referent selection in case-crossover analyses of acute health effects of air pollution. Epidemiology 12 186 192

25. DiavatopoulosDAShortKRPriceJTWilkschJJBrownLE 2010 Influenza A virus facilitates Streptococcus pneumoniae transmission and disease. FASEB J 24 1789 1798

26. KingQOLeiBHarmsenAG 2009 Pneumococcal surface protein A contributes to secondary Streptococcus pneumoniae infection after influenza virus infection. J Infect Dis 200 537 545

27. McCullersJABartmessKC 2003 Role of neuraminidase in lethal synergism between influenza virus and Streptococcus pneumoniae. J Infect Dis 187 1000 1009

28. KoopmanJSLonginiIMJr 1994 The ecological effects of individual exposures and nonlinear disease dynamics in populations. Am J Public Health 84 836 842

29. GrabowskaKHogbergLPenttinenPSvenssonAEkdahlK 2006 Occurrence of invasive pneumococcal disease and number of excess cases due to influenza. BMC Infect Dis 6 58

30. ToschkeAMArenzSvon KriesRPuppeWWeiglJA 2008 No temporal association between influenza outbreaks and invasive pneumococcal infections. Arch Dis Child 93 218

31. WalterNDTaylorTHShayDKThompsonWWBrammerL 2010 Influenza circulation and the burden of invasive pneumococcal pneumonia during a non-pandemic period in the United States. Clin Infect Dis 50 175

32. Centers for Disease Control and Prevention 2009 Interim guidance for use of 23-valent pneumococcal polysaccharide vaccine during novel influenza A (H1N1) outbreak. Atlanta, (Georgia) U.S. Department of Health and Human Services Available: http://www.cdc.gov/h1n1flu/guidance/ppsv_h1n1.htm. Accessed 16 February 2011

33. GalvaniAPRelugaTCChapmanGB 2007 Long-standing influenza vaccination policy is in accord with individual self-interest but not with the utilitarian optimum. Proc Natl Acad Sci U S A 104 5692 5697

34. LoebMRussellMLMossLFonsecaKFoxJ 2010 Effect of influenza vaccination of children on infection rates in Hutterite communities: a randomized trial. JAMA 303 943 950

35. DowellSFWhitneyCGWrightCRoseCEJrSchuchatA 2003 Seasonal patterns of invasive pneumococcal disease. Emerg Infect Dis 9 573 579

36. JanesHSheppardLLumleyT 2005 Overlap bias in the case-crossover design, with application to air pollution exposures. Stat Med 24 285 300

37. DoyleTJGlynnMKGrosecloseSL 2002 Completeness of notifiable infectious disease reporting in the United States: an analytical literature review. Am J Epidemiol 155 866 874

38. MontoASAnsaldiFAspinallRMcElhaneyJEMontanoLF 2009 Influenza control in the 21st century: Optimizing protection of older adults. Vaccine 27 5043 5053

Štítky
Interné lekárstvo

Článok vyšiel v časopise

PLOS Medicine


2011 Číslo 6
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#