#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Cyclic di-GMP is Essential for the Survival of the Lyme Disease Spirochete in Ticks


Cyclic dimeric GMP (c-di-GMP) is a bacterial second messenger that modulates many biological processes. Although its role in bacterial pathogenesis during mammalian infection has been documented, the role of c-di-GMP in a pathogen's life cycle within a vector host is less understood. The enzootic cycle of the Lyme disease pathogen Borrelia burgdorferi involves both a mammalian host and an Ixodes tick vector. The B. burgdorferi genome encodes a single copy of the diguanylate cyclase gene (rrp1), which is responsible for c-di-GMP synthesis. To determine the role of c-di-GMP in the life cycle of B. burgdorferi, an Rrp1-deficient B. burgdorferi strain was generated. The rrp1 mutant remains infectious in the mammalian host but cannot survive in the tick vector. Microarray analyses revealed that expression of a four-gene operon involved in glycerol transport and metabolism, bb0240-bb0243, was significantly downregulated by abrogation of Rrp1. In vitro, the rrp1 mutant is impaired in growth in the media containing glycerol as the carbon source (BSK-glycerol). To determine the contribution of the glycerol metabolic pathway to the rrp1 mutant phenotype, a glp mutant, in which the entire bb0240-bb0243 operon is not expressed, was generated. Similar to the rrp1 mutant, the glp mutant has a growth defect in BSK-glycerol medium. In vivo, the glp mutant is also infectious in mice but has reduced survival in ticks. Constitutive expression of the bb0240-bb0243 operon in the rrp1 mutant fully rescues the growth defect in BSK-glycerol medium and partially restores survival of the rrp1 mutant in ticks. Thus, c-di-GMP appears to govern a catabolic switch in B. burgdorferi and plays a vital role in the tick part of the spirochetal enzootic cycle. This work provides the first evidence that c-di-GMP is essential for a pathogen's survival in its vector host.


Vyšlo v časopise: Cyclic di-GMP is Essential for the Survival of the Lyme Disease Spirochete in Ticks. PLoS Pathog 7(6): e32767. doi:10.1371/journal.ppat.1002133
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1002133

Souhrn

Cyclic dimeric GMP (c-di-GMP) is a bacterial second messenger that modulates many biological processes. Although its role in bacterial pathogenesis during mammalian infection has been documented, the role of c-di-GMP in a pathogen's life cycle within a vector host is less understood. The enzootic cycle of the Lyme disease pathogen Borrelia burgdorferi involves both a mammalian host and an Ixodes tick vector. The B. burgdorferi genome encodes a single copy of the diguanylate cyclase gene (rrp1), which is responsible for c-di-GMP synthesis. To determine the role of c-di-GMP in the life cycle of B. burgdorferi, an Rrp1-deficient B. burgdorferi strain was generated. The rrp1 mutant remains infectious in the mammalian host but cannot survive in the tick vector. Microarray analyses revealed that expression of a four-gene operon involved in glycerol transport and metabolism, bb0240-bb0243, was significantly downregulated by abrogation of Rrp1. In vitro, the rrp1 mutant is impaired in growth in the media containing glycerol as the carbon source (BSK-glycerol). To determine the contribution of the glycerol metabolic pathway to the rrp1 mutant phenotype, a glp mutant, in which the entire bb0240-bb0243 operon is not expressed, was generated. Similar to the rrp1 mutant, the glp mutant has a growth defect in BSK-glycerol medium. In vivo, the glp mutant is also infectious in mice but has reduced survival in ticks. Constitutive expression of the bb0240-bb0243 operon in the rrp1 mutant fully rescues the growth defect in BSK-glycerol medium and partially restores survival of the rrp1 mutant in ticks. Thus, c-di-GMP appears to govern a catabolic switch in B. burgdorferi and plays a vital role in the tick part of the spirochetal enzootic cycle. This work provides the first evidence that c-di-GMP is essential for a pathogen's survival in its vector host.


Zdroje

1. RossPWeinhouseHAloniYMichaeliDWeinberger-OhanaP 1987 Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic acid. Nature 325 279 281

2. HenggeR 2009 Principles of c-di-GMP signalling in bacteria. Nat Rev Microbiol 7 263 273

3. JenalUMaloneJ 2006 Mechanisms of cyclic-di-GMP signaling in bacteria. Annu Rev Genet 40 385 407

4. WolfeAJVisickKL 2010 The second messenger cyclic di-GMP. Washington D.C. ASM Press

5. GalperinMYNikolskayaANKooninEV 2001 Novel domains of the prokaryotic two-component signal transduction systems. FEMS Microbiol Lett 203 11 21

6. BobrovAGKirillinaOPerryRD 2005 The phosphodiesterase activity of the HmsP EAL domain is required for negative regulation of biofilm formation in Yersinia pestis. FEMS Microbiol Lett 247 123 130

7. ChristenMChristenBFolcherMSchauerteAJenalU 2005 Identification and characterization of a cyclic di-GMP-specific phosphodiesterase and its allosteric control by GTP. J Biol Chem 280 30829 30837

8. RyjenkovDATarutinaMMoskvinOVGomelskyM 2005 Cyclic diguanylate is a ubiquitous signaling molecule in bacteria: insights into biochemistry of the GGDEF protein domain. J Bacteriol 187 1792 1798

9. SchmidtAJRyjenkovDAGomelskyM 2005 The ubiquitous protein domain EAL is a cyclic diguanylate-specific phosphodiesterase: enzymatically active and inactive EAL domains. J Bacteriol 187 4774 4781

10. RyanRPFouhyYLuceyJFCrossmanLCSpiroS 2006 Cell-cell signaling in Xanthomonas campestris involves an HD-GYP domain protein that functions in cyclic di-GMP turnover. Proc Natl Acad Sci U S A 103 6712 6717

11. PaulRWeiserSAmiotNCChanCSchirmerT 2004 Cell cycle-dependent dynamic localization of a bacterial response regulator with a novel di-guanylate cyclase output domain. Genes Dev 18 715 727

12. GalperinMY 2005 A census of membrane-bound and intracellular signal transduction proteins in bacteria: bacterial IQ, extroverts and introverts. BMC Microbiol 5 35

13. RomlingUGomelskyMGalperinMY 2005 C-di-GMP: the dawning of a novel bacterial signalling system. Mol Microbiol 57 629 639

14. NewellPDMondsRDO'TooleGA 2009 LapD is a bis-(3′,5′)-cyclic dimeric GMP-binding protein that regulates surface attachment by Pseudomonas fluorescens Pf0-1. Proc Natl Acad Sci U S A 106 3461 3466

15. BoehmAKaiserMLiHSpanglerCKasperCA 2010 Second messenger-mediated adjustment of bacterial swimming velocity. Cell 141 107 116

16. FangXGomelskyM 2010 A post-translational, c-di-GMP-dependent mechanism regulating flagellar motility. Mol Microbiol 76 1295 1305

17. PaulKNietoVCarlquistWCBlairDFHarsheyRM 2010 The c-di-GMP binding protein YcgR controls flagellar motor direction and speed to affect chemotaxis by a “backstop brake” mechanism. Mol Cell 38 128 139

18. SimmRMorrMKaderANimtzMRomlingU 2004 GGDEF and EAL domains inversely regulate cyclic di-GMP levels and transition from sessility to motility. Mol Microbiol 53 1123 1134

19. TischlerADCamilliA 2004 Cyclic diguanylate (c-di-GMP) regulates Vibrio cholerae biofilm formation. Mol Microbiol 53 857 869

20. GomelskyM 2011 cAMP, c-di-GMP, c-di-AMP and now cGMP: bacteria use them all! Mol Microbiol 79 562 565

21. TamayoRPrattJTCamilliA 2007 Roles of cyclic diguanylate in the regulation of bacterial pathogenesis. Annu Rev Microbiol 61 131 148

22. CotterPAStibitzS 2007 c-di-GMP-mediated regulation of virulence and biofilm formation. Curr Opin Microbiol 10 17 23

23. SteereACCoburnJGlicksteinL 2004 The emergence of Lyme disease. J Clin Invest 113 1093 1101

24. FraserCMCasjensSHuangWMSuttonGGClaytonR 1997 Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi. Nature 390 580 586

25. DasRHegyiHGersteinM 2000 Genome analyses of spirochetes: a study of the protein structures, functions and metabolic pathways in Treponema pallidum and Borrelia burgdorferi. J Mol Microbiol Biotechnol 2 387 392

26. BoardmanBKHeMOuyangZXuHPangX 2008 Essential role of the response regulator Rrp2 in the infectious cycle of Borrelia burgdorferi. Infect Immun 76 3844 3853

27. CaimanoMJIyerREggersCHGonzalezCMortonEA 2007 Analysis of the RpoS regulon in Borrelia burgdorferi in response to mammalian host signals provides insight into RpoS function during the enzootic cycle. Mol Microbiol 65 1193 1217

28. YangXFAlaniSMNorgardMV 2003 The response regulator Rrp2 is essential for the expression of major membrane lipoproteins in Borrelia burgdorferi. Proc Natl Acad Sci U S A 100 11001 11006

29. OuyangZBlevinsJSNorgardMV 2008 Transcriptional interplay among the regulators Rrp2, RpoN, and RpoS in Borrelia burgdorferi. Microbiology 154 2641 2658

30. FisherMAGrimmDHenionAKEliasAFStewartPE 2005 Borrelia burgdorferi sigma54 is required for mammalian infection and vector transmission but not for tick colonization. Proc Natl Acad Sci U S A 102 5162 5167

31. RosaPATillyKStewartPE 2005 The burgeoning molecular genetics of the Lyme disease spirochaete. Nat Rev Microbiol 3 129 143

32. RogersEATerekhovaDZhangHHovisKMSchwartzI 2009 Rrp1, a cyclic-di-GMP-producing response regulator, is an important regulator of Borrelia burgdorferi core cellular functions. Mol Microbiol 71 1551 1573

33. SultanSZPitzerJEMillerMRMotalebMA 2010 Analysis of a Borrelia burgdorferi phosphodiesterase demonstrates a role for cyclic-di-guanosine monophosphate in motility and virulence. Mol Microbiol 77 128 142

34. YangXFPalUAlaniSMFikrigENorgardMV 2004 Essential role for OspA/B in the life cycle of the Lyme disease spirochete. J Exp Med 199 641 648

35. PalUYangXChenMBockenstedtLKAndersonJF 2004 OspC facilitates Borrelia burgdorferi invasion of Ixodes scapularis salivary glands. J Clin Invest 113 220 230

36. GherardiniFBoylanJLawenceKSkareJ 2010 Metabolism and Physiology of Borrelia. SamulesDSRadolfJD Borrelia: Molecular Biology, Host Interaction and Pathogenesis Norfolk, UK Caister Academic Press 103 138

37. von LackumKStevensonB 2005 Carbohydrate utilization by the Lyme borreliosis spirochete, Borrelia burgdorferi. FEMS Microbiol Lett 243 173 179

38. SinghSKGirschickHJ 2004 Molecular survival strategies of the Lyme disease spirochete Borrelia burgdorferi. Lancet Infect Dis 4 575 583

39. CaimanoMJEggersCHGonzalezCARadolfJD 2005 Alternate sigma factor RpoS is required for the in vivo-specific repression of Borrelia burgdorferi plasmid lp54-borne ospA and lp6.6 genes. J Bacteriol 187 7845 7852

40. HickmanJWTifreaDFHarwoodCS 2005 A chemosensory system that regulates biofilm formation through modulation of cyclic diguanylate levels. Proc Natl Acad Sci U S A 102 14422 14427

41. LiuXBeyhanSLimBLiningtonRGYildizFH 2010 Identification and characterization of a phosphodiesterase that inversely regulates motility and biofilm formation in Vibrio cholerae. J Bacteriol 192 4541 4552

42. KazmierczakBILebronMBMurrayTS 2006 Analysis of FimX, a phosphodiesterase that governs twitching motility in Pseudomonas aeruginosa. Mol Microbiol 60 1026 1043

43. KuchmaSLBrothersKMMerrittJHLiberatiNTAusubelFM 2007 BifA, a cyclic-di-GMP phosphodiesterase, inversely regulates biofilm formation and swarming motility by Pseudomonas aeruginosa PA14. J Bacteriol 189 8165 8178

44. HinnebuschBJEricksonDL 2008 Yersinia pestis biofilm in the flea vector and its role in the transmission of plague. Curr Top Microbiol Immunol 322 229 248

45. HinnebuschBJPerryRDSchwanTG 1996 Role of the Yersinia pestis hemin storage (hms) locus in the transmission of plague by fleas. Science 273 367 370

46. SimmRFetherstonJDKaderARomlingUPerryRD 2005 Phenotypic convergence mediated by GGDEF-domain-containing proteins. J Bacteriol 187 6816 6823

47. BobrovAGKirillinaORyjenkovDAWatersCMPricePA 2011 Systematic analysis of cyclic di-GMP signalling enzymes and their role in biofilm formation and virulence in Yersinia pestis. Mol Microbiol 79 533 551

48. StevensonBBabbK 2002 LuxS-mediated quorum sensing in Borrelia burgdorferi, the Lyme disease spirochete. Infect Immun 70 4099 4105

49. BabbKvon LackumKWattierRLRileySPStevensonB 2005 Synthesis of autoinducer 2 by the Lyme disease spirochete, Borrelia burgdorferi. J Bacteriol 187 3079 3087

50. SchauderSShokatKSuretteMGBasslerBL 2001 The LuxS family of bacterial autoinducers: biosynthesis of a novel quorum-sensing signal molecule. Mol Microbiol 41 463 476

51. HubnerARevelATNolenDMHagmanKENorgardMV 2003 Expression of a luxS gene is not required for Borrelia burgdorferi infection of mice via needle inoculation. Infect Immun 71 2892 2896

52. BlevinsJSRevelATCaimanoMJYangXFRichardsonJA 2004 The luxS gene is not required for Borrelia burgdorferi tick colonization, transmission to a mammalian host, or induction of disease. Infect Immun 72 4864 4867

53. KumagaiYMatsuoJHayakawaYRikihisaY 2010 Cyclic di-GMP signaling regulates invasion by Ehrlichia chaffeensis of human monocytes. J Bacteriol 192 4122 4133

54. TamayoRSchildSPrattJTCamilliA 2008 Role of cyclic di-GMP during El Tor biotype Vibrio cholerae infection: characterization of the in vivo-induced cyclic Di-GMP phosphodiesterase CdpA. Infect Immun 76 1617 1627

55. LamprokostopoulouAMonteiroCRhenMRomlingU 2010 Cyclic di-GMP signalling controls virulence properties of Salmonella enterica serovar Typhimurium at the mucosal lining. Environ Microbiol 12 40 53

56. WongFSJanewayCA 1999 Insulin-dependent diabetes mellitus and its animal models. Curr Opin Immunol 11 643 647

57. LeeREChenCPDenlingerDL 1987 A Rapid Cold-Hardening Process in Insects. Science 238 1415 1417

58. SudarsanNLeeERWeinbergZMoyRHKimJN 2008 Riboswitches in eubacteria sense the second messenger cyclic di-GMP. Science 321 411 413

59. HickmanJWHarwoodCS 2008 Identification of FleQ from Pseudomonas aeruginosa as a c-di-GMP-responsive transcription factor. Mol Microbiol 69 376 389

60. WeberHPesaventoCPosslingATischendorfGHenggeR 2006 Cyclic-di-GMP-mediated signalling within the sigma network of Escherichia coli. Mol Microbiol 62 1014 1034

61. PesaventoCBeckerGSommerfeldtNPosslingATschowriN 2008 Inverse regulatory coordination of motility and curli-mediated adhesion in Escherichia coli. Genes Dev 22 2434 2446

62. LimBBeyhanSYildizFH 2007 Regulation of Vibrio polysaccharide synthesis and virulence factor production by CdgC, a GGDEF-EAL domain protein, in Vibrio cholerae. J Bacteriol 189 717 729

63. WatersCMLuWRabinowitzJDBasslerBL 2008 Quorum sensing controls biofilm formation in Vibrio cholerae through modulation of cyclic di-GMP levels and repression of vpsT. J Bacteriol 190 2527 2536

64. KrastevaPVFongJCShikumaNJBeyhanSNavarroMV 2010 Vibrio cholerae VpsT regulates matrix production and motility by directly sensing cyclic di-GMP. Science 327 866 868

65. LeducJLRobertsGP 2009 Cyclic di-GMP allosterically inhibits the CRP-like protein (Clp) of Xanthomonas axonopodis pv. citri. J Bacteriol 191 7121 7122

66. GomelskyM 2009 Cyclic-di-GMP-binding CRP-like protein: a spectacular new role for a veteran signal transduction actor. J Bacteriol 191 6785 6787

67. ChinKHLeeYCTuZLChenCHTsengYH 2010 The cAMP receptor-like protein CLP is a novel c-di-GMP receptor linking cell-cell signaling to virulence gene expression in Xanthomonas campestris. J Mol Biol 396 646 662

68. FongJCYildizFH 2008 Interplay between cyclic AMP-cyclic AMP receptor protein and cyclic di-GMP signaling in Vibrio cholerae biofilm formation. J Bacteriol 190 6646 6659

69. OuyangZKumarMKariuTHaqSGoldbergM 2009 BosR (BB0647) governs virulence expression in Borrelia burgdorferi. Mol Microbiol 74 1331 1343

70. HydeJASeshuJSkareJT 2006 Transcriptional profiling of Borrelia burgdorferi containing a unique bosR allele identifies a putative oxidative stress regulon. Microbiology 152 2599 2609

71. WolfeAJVisickKL 2008 Get the message out: cyclic-di-GMP regulates multiple levels of flagellum-based motility. J Bacteriol 190 463 475

72. LiXPalURamamoorthiNLiuXDesrosiersDC 2007 The Lyme disease agent Borrelia burgdorferi requires BB0690, a Dps homologue, to persist within ticks. Mol Microbiol 63 694 710

73. NeelakantaGLiXPalULiuXBeckDS 2007 Outer surface protein B is critical for Borrelia burgdorferi adherence and survival within Ixodes ticks. PLoS Pathog 3 e33 doi:10.1371/journal.ppat.0030033

74. PalUDaiJLiXNeelakantaGLuoP 2008 A differential role for BB0365 in the persistence of Borrelia burgdorferi in mice and ticks. J Infect Dis 197 148 155

75. PromnaresKKumarMShroderDYAndersonJFPalU 2009 Borrelia burgdorferi small lipoprotein Lp6.6 is a member of multiple protein complexes in the outer membrane and facilitates pathogen transmission from ticks to mice. Mol Microbiol 74 112 125

76. RevelATBlevinsJSAlmazanCNeilLKocanKM 2005 bptA (bbe16) is essential for the persistence of the Lyme disease spirochete, Borrelia burgdorferi, in its natural tick vector. Proc Natl Acad Sci U S A 102 6972 6977

77. RyjenkovDASimmRRomlingUGomelskyM 2006 The PilZ domain is a receptor for the second messenger c-di-GMP: the PilZ domain protein YcgR controls motility in enterobacteria. J Biol Chem 281 30310 30314

78. AmikamDGalperinMY 2006 PilZ domain is part of the bacterial c-di-GMP binding protein. Bioinformatics 22 3 6

79. FreedmanJCRogersEAKostickJLZhangHIyerR 2010 Identification and molecular characterization of a cyclic-di-GMP effector protein, PlzA (BB0733): additional evidence for the existence of a functional cyclic-di-GMP regulatory network in the Lyme disease spirochete, Borrelia burgdorferi. FEMS Immunol Med Microbiol 58 285 294

80. TamRSaierMH 1993 Structural, functional, and evolutionary relationships among extracellular solute-binding receptors of bacteria. Microbiol Rev 57 320 346

81. BlevinsJHagmanKENorgardMV 2008 Assessment of decorin-binding protein A to the infectivity of Borrelia burgdorferi in the murine models of needle and tick infection. BMC Microbiol 8 82

82. GilmoreRDHowisonRRDietrichGPattonTGCliftonDR 2010 The bba64 gene of Borrelia burgdorferi, the Lyme disease agent, is critical for mammalian infection via tick bite transmission. Proc Natl Acad Sci U S A 107 7515 7520

83. GrimmDTillyKByramRStewartPEKrumJG 2004 Outer-surface protein C of the Lyme disease spirochete: a protein induced in ticks for infection of mammals. Proc Natl Acad Sci U S A 101 3142 3147

84. SeshuJEsteve-GassentMDLabandeira-ReyMKimJHTrzeciakowskiJP 2006 Inactivation of the fibronectin-binding adhesin gene bbk32 significantly attenuates the infectivity potential of Borrelia burgdorferi. Mol Microbiol 59 1591 1601

85. WeeningEHParveenNTrzeciakowskiJPLeongJMHookM 2008 Borrelia burgdorferi lacking DbpBA exhibits an early survival defect during experimental infection. Infect Immun 76 5694 5705

86. MaruskovaMEsteve-GassentMDSextonVLSeshuJ 2008 Role of the BBA64 locus of Borrelia burgdorferi in early stages of infectivity in a murine model of Lyme disease. Infect Immun 76 391 402

87. KawabataHNorrisSJWatanabeH 2004 BBE02 disruption mutants of Borrelia burgdorferi B31 have a highly transformable, infectious phenotype. Infect Immun 72 7147 7154

88. BarbourAG 1984 Isolation and cultivation of Lyme disease spirochetes. Yale J Biol Med 57 521 525

89. SamuelsDS 1995 Electrotransformation of the spirochete Borrelia burgdorferi. NickoloffJA Methods in molecular biology Totowa, NJ Humana Press 253 259

90. PurserJENorrisSJ 2000 Correlation between plasmid content and infectivity in Borrelia burgdorferi. Proc Natl Acad Sci U S A 97 13865 13870

91. XuHCaimanoMJLinTHeMRadolfJD 2010 Role of acetyl-phosphate in activation of the Rrp2-RpoN-RpoS pathway in Borrelia burgdorferi. PLoS Pathog 6 e1001104 doi:1001110.1001371/journal.ppat.1001104

92. AkinsDRBourellKWCaimanoMJNorgardMVRadolfJD 1998 A new animal model for studying Lyme disease spirochetes in a mammalian host-adapted state. J Clin Invest 101 2240 2250

93. XuHHeMHeJJYangXF 2010 Role of the surface lipoprotein BBA07 in the enzootic cycle of Borrelia burgdorferi. Infect Immun 78 2910 2918

94. TerekhovaDIyerRWormserGPSchwartzI 2006 Comparative genome hybridization reveals substantial variation among clinical isolates of Borrelia burgdorferi sensu stricto with different pathogenic properties. J Bacteriol 188 6124 6134

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2011 Číslo 6
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#