#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Virus-Encoded microRNAs: An Overview and a Look to the Future


MicroRNAs (miRNAs) are small RNAs that play important roles in the regulation of gene expression. First described as posttranscriptional gene regulators in eukaryotic hosts, virus-encoded miRNAs were later uncovered. It is now apparent that diverse virus families, most with DNA genomes, but at least some with RNA genomes, encode miRNAs. While deciphering the functions of viral miRNAs has lagged behind their discovery, recent functional studies are bringing into focus these roles. Some of the best characterized viral miRNA functions include subtle roles in prolonging the longevity of infected cells, evading the immune response, and regulating the switch to lytic infection. Notably, all of these functions are particularly important during persistent infections. Furthermore, an emerging view of viral miRNAs suggests two distinct groups exist. In the first group, viral miRNAs mimic host miRNAs and take advantage of conserved networks of host miRNA target sites. In the larger second group, viral miRNAs do not share common target sites conserved for host miRNAs, and it remains unclear what fraction of these targeted transcripts are beneficial to the virus. Recent insights from multiple virus families have revealed new ways of interacting with the host miRNA machinery including noncanonical miRNA biogenesis and new mechanisms of posttranscriptional cis gene regulation. Exciting challenges await the field, including determining the most relevant miRNA targets and parlaying our current understanding of viral miRNAs into new therapeutic strategies. To accomplish these goals and to better grasp miRNA function, new in vivo models that recapitulate persistent infections associated with viral pathogens are required.


Vyšlo v časopise: Virus-Encoded microRNAs: An Overview and a Look to the Future. PLoS Pathog 8(12): e32767. doi:10.1371/journal.ppat.1003018
Kategorie: Review
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1003018

Souhrn

MicroRNAs (miRNAs) are small RNAs that play important roles in the regulation of gene expression. First described as posttranscriptional gene regulators in eukaryotic hosts, virus-encoded miRNAs were later uncovered. It is now apparent that diverse virus families, most with DNA genomes, but at least some with RNA genomes, encode miRNAs. While deciphering the functions of viral miRNAs has lagged behind their discovery, recent functional studies are bringing into focus these roles. Some of the best characterized viral miRNA functions include subtle roles in prolonging the longevity of infected cells, evading the immune response, and regulating the switch to lytic infection. Notably, all of these functions are particularly important during persistent infections. Furthermore, an emerging view of viral miRNAs suggests two distinct groups exist. In the first group, viral miRNAs mimic host miRNAs and take advantage of conserved networks of host miRNA target sites. In the larger second group, viral miRNAs do not share common target sites conserved for host miRNAs, and it remains unclear what fraction of these targeted transcripts are beneficial to the virus. Recent insights from multiple virus families have revealed new ways of interacting with the host miRNA machinery including noncanonical miRNA biogenesis and new mechanisms of posttranscriptional cis gene regulation. Exciting challenges await the field, including determining the most relevant miRNA targets and parlaying our current understanding of viral miRNAs into new therapeutic strategies. To accomplish these goals and to better grasp miRNA function, new in vivo models that recapitulate persistent infections associated with viral pathogens are required.


Zdroje

1. UlitskyI, ShkumatavaA, JanCH, SiveH, BartelDP (2011) Conserved function of lincRNAs in vertebrate embryonic development despite rapid sequence evolution. Cell 147: 1537–1550.

2. WangKC, ChangHY (2011) Molecular mechanisms of long noncoding RNAs. Mol Cell 43: 904–914.

3. FireA, XuS, MontgomeryMK, KostasSA, DriverSE, et al. (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391: 806–811.

4. BuchonN, VauryC (2006) RNAi: a defensive RNA-silencing against viruses and transposable elements. Heredity 96: 195–202.

5. ObbardDJ, GordonKHJ, BuckAH, JigginsFM (2009) The evolution of RNAi as a defence against viruses and transposable elements. Philos Trans R Soc Lond B Biol Sci 364: 99–115.

6. RijRP van, BerezikovE (2009) Small RNAs and the control of transposons and viruses in Drosophila. Trends Microbiol 17: 163–171.

7. CullenBR (2006) Viruses and microRNAs. Nat Genet 38: S25–S30.

8. UmbachJL, CullenBR (2009) The role of RNAi and microRNAs in animal virus replication and antiviral immunity. Genes Dev 23: 1151–1164.

9. JeangK-T (2012) RNAi in the regulation of mammalian viral infections. BMC Biology 10: 58.

10. YangN, KazazianHH (2006) L1 retrotransposition is suppressed by endogenously encoded small interfering RNAs in human cultured cells. Nat Struct Mol Biol 13: 763–771.

11. KanekoH, DridiS, TaralloV, GelfandBD, FowlerBJ, et al. (2011) DICER1 deficit induces Alu RNA toxicity in age-related macular degeneration. Nature 471: 325–330.

12. TaralloV, HiranoY, GelfandBD, DridiS, KerurN, et al. (2012) DICER1 loss and Alu RNA induce age-related macular degeneration via the NLRP3 inflammasome and MyD88. Cell 149: 847–859.

13. DeltchevaE, ChylinskiK, SharmaCM, GonzalesK, ChaoY, et al. (2011) CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471: 602–607.

14. PalmerKL, GilmoreMS (2010) Multidrug-resistant enterococci lack CRISPR-Cas. mBio 1 ((4)): e00227–10.

15. DrinnenbergIA, FinkGR, BartelDP (2011) Compatibility with killer explains the rise of RNAi-deficient fungi. Science 333: 1592–1592.

16. DelaneyNF, BalengerS, BonneaudC, MarxCJ, HillGE, et al. (2012) Ultrafast evolution and loss of CRISPRs following a host shift in a novel wildlife pathogen, mycoplasma gallisepticum. PLoS Genet 8: e1002511 doi:10.1371/journal.pgen.1002511.

17. SternA, KerenL, WurtzelO, AmitaiG, SorekR (2010) Self-targeting by CRISPR: gene regulation or autoimmunity? Trends Genet 26: 335–340.

18. AxtellMJ, WestholmJO, LaiEC (2011) Vive la différence: biogenesis and evolution of microRNAs in plants and animals. Genome Biol 12: 221.

19. LeeRC, FeinbaumRL, AmbrosV (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75: 843–854.

20. Lagos-QuintanaM, RauhutR, LendeckelW, TuschlT (2001) Identification of novel genes coding for small expressed RNAs. Science 294: 853–858.

21. LauNC, LimLP, WeinsteinEG, BartelDP (2001) An abundant class of tiny RNAs with probable regulatory roles in caenorhabditis elegans. Science 294: 858–862.

22. LeeRC, AmbrosV (2001) An extensive class of small RNAs in caenorhabditis elegans. Science 294: 862–864.

23. Slezak-ProchazkaI, DurmusS, KroesenB-J, Van Den BergA (2010) MicroRNAs, macrocontrol: regulation of miRNA processing. RNA 16: 1087–1095.

24. VasudevanS, TongY, SteitzJA (2007) Switching from repression to activation: microRNAs can up-regulate translation. Science 318: 1931–1934.

25. JoplingCL, YiM, LancasterAM, LemonSM, SarnowP (2005) Modulation of hepatitis C virus RNA abundance by a liver-specific microRNA. Science 309: 1577–1581.

26. BazziniAA, LeeMT, GiraldezAJ (2012) Ribosome profiling shows that miR-430 reduces translation before causing mRNA decay in zebrafish. Science 336: 233–237.

27. DjuranovicS, NahviA, GreenR (2012) miRNA-mediated gene silencing by translational repression followed by mRNA deadenylation and decay. Science 336: 237–240.

28. GrundhoffA, SullivanCS (2011) Virus-encoded microRNAs. Virology 411: 325–343.

29. MendellJT, OlsonEN (2012) MicroRNAs in stress signaling and human disease. Cell 148: 1172–1187.

30. MiskaEA, Alvarez-SaavedraE, AbbottAL, LauNC, HellmanAB, et al. (2007) Most Caenorhabditis elegans microRNAs are individually not essential for development or viability. PLoS Genet 3: e215 doi:10.1371/journal.pgen.0030215.

31. ParkCY, JekerLT, Carver-MooreK, OhA, LiuHJ, et al. (2012) A resource for the conditional ablation of microRNAs in the mouse. Cell Reports 1: 385–391.

32. SpeckSH, GanemD (2010) Viral latency and its regulation: lessons from the γ-herpesviruses. Cell Host Microbe 8: 100–115.

33. CullenBR (2010) Five questions about viruses and microRNAs. PLoS Pathog 6: e1000787 doi:10.1371/journal.ppat.1000787.

34. HouzetL, JeangK-T (2011) MicroRNAs and human retroviruses. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms 1809: 686–693.

35. PfefferS, SewerA, Lagos-QuintanaM, SheridanR, SanderC, et al. (2005) Identification of microRNAs of the herpesvirus family. Nat Methods 2: 269–276.

36. LinJ, CullenBR (2007) Analysis of the interaction of primate retroviruses with the human RNA interference machinery. J Virol 81: 12218–12226.

37. ChiangK, RiceAP (2011) Mini ways to stop a virus: microRNAs and HIV-1 replication. Future Virol 6: 209–221.

38. SunG, RossiJJ (2011) MicroRNAs and their potential involvement in HIV infection. Trends Pharmacol Sci 32: 675–681.

39. KincaidRP, BurkeJM, SullivanCS (2012) RNA virus microRNA that mimics a B-cell oncomiR. Proc Natl Acad Sci USA 109: 3077–3082.

40. RouhaH, ThurnerC, MandlCW (2010) Functional microRNA generated from a cytoplasmic RNA virus. Nucleic Acids Res 38: 8328–8337.

41. ShapiroJS, VarbleA, PhamAM, tenOeverBR (2010) Noncanonical cytoplasmic processing of viral microRNAs. RNA 16: 2068–2074.

42. VarbleA, ChuaMA, PerezJT, ManicassamyB, García-SastreA, et al. (2010) Engineered RNA viral synthesis of microRNAs. Proc Natl Acad Sci USA 107: 11519–11524.

43. LangloisRA, ShapiroJS, PhamAM, tenOeverBR (2012) In vivo delivery of cytoplasmic RNA virus-derived miRNAs. Mol Ther 20: 367–375.

44. CaiX, LiG, LaiminsLA, CullenBR (2006) Human papillomavirus genotype 31 does not express detectable microRNA levels during latent or productive virus replication. J Virol 80: 10890–10893.

45. GuW, AnJ, YeP, ZhaoK-N, AntonssonA (2011) Prediction of conserved microRNAs from skin and mucosal human papillomaviruses. Arch Virol 156: 1161–1171.

46. UmbachJL, NagelMA, CohrsRJ, GildenDH, CullenBR (2009) Analysis of human alphaherpesvirus microRNA expression in latently infected human trigeminal ganglia. J Virol 83: 10677–10683.

47. GlazovEA, HorwoodPF, AssavalapsakulW, KongsuwanK, MitchellRW, et al. (2010) Characterization of microRNAs encoded by the bovine herpesvirus 1 genome. J Gen Virol 91: 32–41.

48. AnselmoA, FloriL, JaffrezicF, RutiglianoT, CecereM, et al. (2011) Co-expression of host and viral microRNAs in porcine dendritic cells infected by the pseudorabies virus. PLoS ONE 6: e17374 doi:10.1371/journal.pone.0017374.

49. ZisoulisDG, LovciMT, WilbertML, HuttKR, LiangTY, et al. (2010) Comprehensive discovery of endogenous Argonaute binding sites in Caenorhabditis elegans. Nat Struct Mol Biol 17: 173–179.

50. GrimsonA, FarhKK-H, JohnstonWK, Garrett-EngeleP, LimLP, et al. (2007) MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell 27: 91–105.

51. KozomaraA, Griffiths-JonesS (2010) miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res 39: D152–D157.

52. SubramanianS, SteerCJ (2010) MicroRNAs as gatekeepers of apoptosis. J Cell Physiol 223: 289–298.

53. KutokJL, WangF (2006) Spectrum of Epstein-Barr Virus–associated diseases. Annu Rev Pathol 1: 375–404.

54. ChoyEY-W, SiuK-L, KokK-H, LungRW-M, TsangCM, et al. (2008) An Epstein-Barr Virus–encoded microRNA targets PUMA to promote host cell survival. J Exp Med 205: 2551–2560.

55. MarquitzAR, MathurA, NamCS, Raab-TraubN (2011) The Epstein–Barr Virus BART microRNAs target the pro-apoptotic protein Bim. Virology 412: 392–400.

56. SetoE, MoosmannA, GrömmingerS, WalzN, GrundhoffA, et al. (2010) Micro RNAs of Epstein-Barr Virus promote cell cycle progression and prevent apoptosis of primary human B cells. PLoS Pathog 6: e1001063 doi:10.1371/journal.ppat.1001063.

57. XuS, XueC, LiJ, BiY, CaoY (2011) Marek's disease virus type 1 microRNA miR-M3 suppresses cisplatin-induced apoptosis by targeting SMAD2 of the transforming growth factor beta signal pathway. J Virol 85: 276–285.

58. AbendJR, UldrickT, ZiegelbauerJM (2010) Regulation of tumor necrosis factor-like weak inducer of apoptosis receptor protein (TWEAKR) expression by Kaposi's sarcoma-associated herpesvirus microRNA prevents TWEAK-induced apoptosis and inflammatory cytokine expression. J Virol 84: 12139–12151.

59. SuffertG, MaltererG, HausserJ, ViiliäinenJ, FenderA, et al. (2011) Kaposi's Sarcoma herpesvirus microRNAs target caspase 3 and regulate apoptosis. PLoS Pathog 7: e1002405 doi:10.1371/journal.ppat.1002405.

60. ZiegelbauerJM, SullivanCS, GanemD (2008) Tandem array–based expression screens identify host mRNA targets of virus-encoded microRNAs. Nat Genet 41: 130–134.

61. LeeSH, KalejtaRF, KerryJ, SemmesOJ, O'ConnorCM, et al. (2012) BclAF1 restriction factor is neutralized by proteasomal degradation and microRNA repression during human cytomegalovirus infection. Proc Natl Acad Sci USA 109: 9575–9580.

62. RileyKJ, RabinowitzGS, YarioTA, LunaJM, DarnellRB, et al. (2012) EBV and human microRNAs co-target oncogenic and apoptotic viral and human genes during latency. EMBO J 31: 2207–2221.

63. MoorePS, ChangY (2010) Why do viruses cause cancer? Highlights of the first century of human tumour virology. Nat Rev Cancer 10: 878–889.

64. FeederleR, HaarJ, BernhardtK, LinnstaedtSD, BannertH, et al. (2011) The members of an Epstein-Barr Virus microRNA cluster cooperate to transform B lymphocytes. J Virol 85: 9801–9810.

65. FeederleR, LinnstaedtSD, BannertH, LipsH, BencunM, et al. (2011) A viral microRNA cluster strongly potentiates the transforming properties of a human herpesvirus. PLoS Pathog 7: e1001294 doi:10.1371/journal.ppat.1001294.

66. MarquitzAR, MathurA, ShairKHY, Raab-TraubN (2012) Infection of Epstein–Barr virus in a gastric carcinoma cell line induces anchorage independence and global changes in gene expression. Proc Natl Acad Sci USA 109: 9593–9598.

67. ZhaoY, XuH, YaoY, SmithLP, KgosanaL, et al. (2011) Critical role of the virus-encoded microRNA-155 ortholog in the induction of Marek's disease lymphomas. PLoS Pathog 7: e1001305 doi:10.1371/journal.ppat.1001305.

68. BossIW, NadeauPE, AbbottJR, YangY, MergiaA, et al. (2011) A Kaposi's sarcoma-associated herpesvirus-encoded ortholog of microRNA miR-155 induces human splenic B-cell expansion in NOD/LtSz-Scid IL2Rγnull mice. J Virol 85: 9877–9886.

69. McClureLV, SullivanCS (2008) Kaposi's sarcoma herpes virus taps into a host microRNA regulatory network. Cell Host Microbe 3: 1–3.

70. FaraoniI, AntonettiFR, CardoneJ, BonmassarE (2009) miR-155 gene: a typical multifunctional microRNA. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 1792: 497–505.

71. TiliE, CroceCM, MichailleJ-J (2009) miR-155: on the crosstalk between inflammation and cancer. Int Rev Immunol 28: 264–284.

72. GottweinE, MukherjeeN, SachseC, FrenzelC, MajorosWH, et al. (2007) A viral microRNA functions as an orthologue of cellular miR-155. Nature 450: 1096–1099.

73. SkalskyRL, SamolsMA, PlaisanceKB, BossIW, RivaA, et al. (2007) Kaposi's sarcoma-associated herpesvirus encodes an ortholog of miR-155. J Virol 81: 12836–12845.

74. LiuY, SunR, LinX, LiangD, DengQ, et al. (2012) Kaposi's Sarcoma-associated herpesvirus-encoded microRNA miR-K12–11 attenuates transforming growth factor beta signaling through suppression of SMAD5. J Virol 86: 1372–1381.

75. PekarskyY, CroceCM (2010) Is miR-29 an oncogene or tumor suppressor in CLL? Oncotarget 1: 224–227.

76. GilletN, FlorinsA, BoxusM, BurteauC, NigroA, et al. (2007) Mechanisms of leukemogenesis induced by bovine leukemia virus: prospects for novel anti-retroviral therapies in human. Retrovirology 4: 18.

77. SantanamU, ZanesiN, EfanovA, CostineanS, PalamarchukA, et al. (2010) Chronic lymphocytic leukemia modeled in mouse by targeted miR-29 expression. Proc Natl Acad Sci USA 107: 12210–12215.

78. SullivanCS (2008) New roles for large and small viral RNAs in evading host defences. Nat Rev Genet 9: 503–507.

79. SullivanCS, GrundhoffAT, TevethiaS, PipasJM, GanemD (2005) SV40-encoded microRNAs regulate viral gene expression and reduce susceptibility to cytotoxic T cells. Nature 435: 682–686.

80. SullivanCS, SungCK, PackCD, GrundhoffA, LukacherAE, et al. (2009) Murine polyomavirus encodes a microRNA that cleaves early RNA transcripts but is not essential for experimental infection. Virology 387: 157–167.

81. NachmaniD, Stern-GinossarN, SaridR, MandelboimO (2009) Diverse herpesvirus microRNAs target the stress-induced immune ligand MICB to escape recognition by natural killer cells. Cell Host Microbe 5: 376–385.

82. Stern-GinossarN, SalehN, GoldbergMD, PrichardM, WolfDG, et al. (2009) Analysis of human cytomegalovirus-encoded microRNA activity during infection. J Virol 83: 10684–10693.

83. BaumanY, NachmaniD, VitenshteinA, TsukermanP, DraymanN, et al. (2011) An identical miRNA of the human JC and BK polyoma viruses targets the stress-induced ligand ULBP3 to escape immune elimination. Cell Host Microbe 9: 93–102.

84. DölkenL, KrmpoticA, KotheS, TuddenhamL, TanguyM, et al. (2010) Cytomegalovirus microRNAs facilitate persistent virus infection in salivary glands. PLoS Pathog 6: e1001150 doi:10.1371/journal.ppat.1001150.

85. MurphyE, VaníčekJ, RobinsH, ShenkT, LevineAJ (2008) Suppression of immediate-early viral gene expression by herpesvirus-coded microRNAs: implications for latency. Proc Natl Acad Sci USA 105: 5453–5458.

86. WuY-L, WuCP, LiuCYY, HsuPW-C, WuEC, et al. (2011) A non-coding RNA of insect HzNV-1 virus establishes latent viral infection through microRNA. Sci Rep 1: 60.

87. BellareP, GanemD (2009) Regulation of KSHV lytic switch protein expression by a virus-encoded microRNA: an evolutionary adaptation that fine-tunes lytic reactivation. Cell Host Microbe 6: 570–575.

88. LinX, LiangD, HeZ, DengQ, RobertsonES, et al. (2011) miR-K12-7-5p encoded by Kaposi's Sarcoma-associated herpesvirus stabilizes the latent state by targeting viral ORF50/RTA. PLoS ONE 6: e16224 doi:10.1371/journal.pone.0016224.

89. LeiX, BaiZ, YeF, XieJ, KimC-G, et al. (2010) Regulation of NF-κB inhibitor Iκ Bα and viral replication by a KSHV microRNA. Nat Cell Biol 12: 193–199.

90. LiangD, GaoY, LinX, HeZ, ZhaoQ, et al. (2011) A human herpesvirus miRNA attenuates interferon signaling and contributes to maintenance of viral latency by targeting IKKε. Cell Res 21: 793–806.

91. LuC-C, LiZ, ChuC-Y, FengJ, FengJ, et al. (2010) MicroRNAs encoded by Kaposi's sarcoma-associated herpesvirus regulate viral life cycle. EMBO Rep 11: 784–790.

92. GottweinE, CorcoranDL, MukherjeeN, SkalskyRL, HafnerM, et al. (2011) Viral microRNA targetome of KSHV-infected primary effusion lymphoma cell lines. Cell Host Microbe 10: 515–526.

93. HaeckerI, GayL, MorseA, McCroryM, YangY, et al. (2012) Comprehensive analysis of the KSHV MiRNA targetome by Ago-HITS-CLIP. Infect Agent Cancer 7: O4.

94. EbertMS, SharpPA (2012) Roles for microRNAs in conferring robustness to biological processes. Cell 149: 515–524.

95. MukherjiS, EbertMS, ZhengGXY, TsangJS, SharpPA, et al. (2011) MicroRNAs can generate thresholds in target gene expression. Nat Genet 43: 854–859.

96. SeoGJ, FinkLHL, O'HaraB, AtwoodWJ, SullivanCS (2008) Evolutionarily conserved function of a viral microRNA. J Virol 82: 9823–9828.

97. SeoGJ, ChenCJ, SullivanCS (2009) Merkel cell polyomavirus encodes a microRNA with the ability to autoregulate viral gene expression. Virology 383: 183–187.

98. ChenCJ, KincaidRP, SeoGJ, BennettMD, SullivanCS (2011) Insights into polyomaviridae microRNA function derived from study of the Bandicoot papillomatosis carcinomatosis viruses. J Virol 85: 4487–4500.

99. CantalupoP, DoeringA, SullivanCS, PalA, PedenKWC, et al. (2005) Complete nucleotide sequence of polyomavirus sA12. J Virol 79: 13094–13104.

100. GreyF, MeyersH, WhiteEA, SpectorDH, NelsonJ (2007) A human cytomegalovirus-encoded microRNA regulates expression of multiple viral genes involved in replication. PLoS Pathog 3: e163 doi:10.1371/journal.ppat.0030163.

101. HussainM, TaftRJ, AsgariS (2008) An insect virus-encoded microRNA regulates viral replication. J Virol 82: 9164–9170.

102. SmedeM, FurlongMJ, AsgariS (2008) Effects of Heliothis virescens ascovirus (HvAV-3e) on a novel host, Crocidolomia pavonana (Lepidoptera: Crambidae). J Invertebr Pathol 99: 281–285.

103. HanJ, PedersenJS, KwonSC, BelairCD, KimY-K, et al. (2009) Posttranscriptional crossregulation between Drosha and dGCR8. Cell 136: 75–84.

104. LinY-T, SullivanCS (2011) Expanding the role of Drosha to the regulation of viral gene expression. Proc Natl Acad Sci USA 108: 11229–11234.

105. XingL, KieffE (2011) Cis-acting effects on RNA processing and Drosha cleavage prevent Epstein-Barr Virus latency III BHRF1 expression. J Virol 85: 8929–8939.

106. SkalskyRL, CorcoranDL, GottweinE, FrankCL, KangD, et al. (2012) The viral and cellular microRNA targetome in lymphoblastoid cell lines. PLoS Pathog 8: e1002484 doi:10.1371/journal.ppat.1002484.

107. van DongenS, Abreu-GoodgerC, EnrightAJ (2008) Detecting microRNA binding and siRNA off-target effects from expression data. Nat Methods 5: 1023–1025.

108. LiuY, TanH, TianH, LiangC, ChenS, et al. (2011) Autoantigen La promotes efficient RNAi, antiviral response, and transposon silencing by facilitating multiple-turnover RISC catalysis. Mol Cell 44: 502–508.

109. WatanabeT, TakedaA, TsukiyamaT, MiseK, OkunoT, et al. (2006) Identification and characterization of two novel classes of small RNAs in the mouse germline: retrotransposon-derived siRNAs in oocytes and germline small RNAs in testes. Genes & Development 20: 1732–1743.

110. HausseckerD, KayMA (2010) miR-122 continues to blaze the trail for microRNA therapeutics. Mol Ther 18: 240–242.

111. HaeckerI, GayLA, YangY, HuJ, MorseAM, et al. (2012) Ago HITS-CLIP expands understanding of Kaposi's Sarcoma-associated herpesvirus miRNA function in primary effusion lymphomas. PLoS Pathog 8: e1002884 doi:10.1371/journal.ppat.1002884.

112. AbendJR, RamalingamD, Kieffer-KwonP, UldrickTS, YarchoanR, et al. (2012) KSHV microRNAs target two components of the TLR/IL-1R signaling cascade, IRAK1 and MYD88, to reduce inflammatory cytokine expression. J Virol Available at http://jvi.asm.org/content/early/2012/08/09/JVI.01147-12.abstract.

113. LeiX, ZhuY, JonesT, BaiZ, HuangY, et al. (2012) A KSHV microRNA and its variants target TGF-β pathway to promote cell survival. J Virol Available at http://jvi.asm.org/content/early/2012/08/16/JVI.06855-11.abstract.

114. WagschalA, RoussetE, BasavarajaiahP, ContrerasX, HarwigA, et al. (2012) Microprocessor, Setx, Xrn2, and Rrp6 co-operate to induce premature termination of transcription by RNAPII. Cell 150: 1147–1157.

115. CazallaD, XieM, SteitzJA (2011) A primate herpesvirus uses the integrator complex to generate viral microRNAs. Mol Cell 43: 982–992.

116. BogerdHP, KarnowskiHW, CaiX, ShinJ, PohlersM, et al. (2010) A mammalian herpesvirus uses noncanonical expression and processing mechanisms to generate viral microRNAs. Mol Cell 37: 135–142.

117. DiebelKW, SmithAL, van DykLF (2010) Mature and functional viral miRNAs transcribed from novel RNA polymerase III promoters. RNA 16: 170–185.

118. WaidnerLA, MorganRW, AndersonAS, BernbergEL, KambojS, et al. (2009) MicroRNAs of Gallid and Meleagrid herpesviruses show generally conserved genomic locations and are virus-specific. Virology 388: 128–136.

119. AmenMA, GriffithsA (2011) Identification and expression analysis of herpes B virus-encoded small RNAs. J Virol 85: 7296–7311.

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2012 Číslo 12
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#