Surviving the Heat of the Moment: A Fungal Pathogens Perspective
article has not abstract
Vyšlo v časopise:
Surviving the Heat of the Moment: A Fungal Pathogens Perspective. PLoS Pathog 9(3): e32767. doi:10.1371/journal.ppat.1003163
Kategorie:
Pearls
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1003163
Souhrn
article has not abstract
Zdroje
1. KlinkertB, NarberhausF (2009) Microbial thermosensors. Cell Mol Life Sci 66: 2661–2676.
2. BhabhraR, MileyMD, MylonakisE, BoettnerD, FortwendelJ, et al. (2004) Disruption of the Aspergillus fumigatus gene encoding nucleolar protein CgrA impairs thermotolerant growth and reduces virulence. Infect Immun 72: 4731–4740.
3. LamothF, JuvvadiPR, FortwendelJR, SteinbachWJ (2012) Heat shock protein 90 is required for conidiation and cell wall integrity in Aspergillus fumigatus. Eukaryot Cell 11: 1324–1332.
4. OdomA, MuirS, LimE, ToffalettiDL, PerfectJ, et al. (1997) Calcineurin is required for virulence of Cryptococcus neoformans. EMBO J 16: 2576–2589.
5. McCuskerJH, ClemonsKV, StevensDA, DavisRW (1994) Saccharomyces cerevisiae virulence phenotype as determined with CD-1 mice is associated with the ability to grow at 42°C and form pseudohyphae. Infect Immun 62: 5447–5455.
6. MarescaB, KobayashiGS (1989) Dimorphism in Histoplasma capsulatum: A model for the study of cell differentiation in pathogenic fungi. Microbiol Rev 53: 186–209.
7. GowNA, BrownAJ, OddsFC (2002) Fungal morphogenesis and host invasion. Curr Opin Microbiol 5: 366–371.
8. LachkeSA, LockhartSR, DanielsKJ, SollDR (2003) Skin facilitates Candida albicans mating. Infect Immun 71: 4970–4976.
9. WuC (1995) Heat shock transcription factors: Structure and regulation. Annu Rev Cell Dev Biol 11: 441–469.
10. SorgerPK, PelhamHRB (1988) Yeast heat shock factor is an essential DNA-binding protein that exhibits temperature-dependent phosphorylation. Cell 54: 855–864.
11. NichollsS, LeachMD, PriestCL, BrownAJ (2009) Role of the heat shock transcription factor, Hsf1, in a major fungal pathogen that is obligately associated with warm-blooded animals. Mol Microbiol 74: 844–861.
12. MetzgerMB, MichaelisS (2009) Analysis of quality control substrates in distinct cellular compartments reveals a unique role for Rpn4p in tolerating misfolded membrane proteins. Mol Biol Cell 20: 1006–1019.
13. Geiler-SamerotteKA, DionMF, BudnikBA, WangSM, HartlDL, et al. (2011) Misfolded proteins impose a dosage-dependent fitness cost and trigger a cytosolic unfolded protein response in yeast. Proc Natl Acad Sci U S A 108: 680–685.
14. CarratuL, FranceschelliS, PardiniCL, KobayashiGS, HorvathI, et al. (1996) Membrane lipid perturbation modifies the set point of the temperature of heat shock response in yeast. Proc Natl Acad Sci U S A 93: 3870–3875.
15. GarganoS, Di LalloG, KobayashiGS, MarescaB (1995) A temperature-sensitive strain of Histoplasma capsulatum has an altered Δ9-fatty acid desaturase gene. Lipids 30: 899–906.
16. KrausPR, BoilyMJ, GilesSS, StajichJE, AllenA, et al. (2004) Identification of Cryptococcus neoformans temperature-regulated genes with a genomic-DNA microarray. Eukaryot Cell 3: 1249–1260.
17. ZhangS, SkalskyY, GarfinkelDJ (1999) MGA2 or SPT23 is required for transcription of the Δ9 fatty acid desaturase gene, OLE1, and nuclear membrane integrity in Saccharomyces cerevisiae. Genetics 151: 473–483.
18. ChowdhuryS, MarisC, AllainFH, NarberhausF (2006) Molecular basis for temperature sensing by an RNA thermometer. EMBO J 25: 2487–2497.
19. KortmannJ, NarberhausF (2012) Bacterial RNA thermometers: molecular zippers and switches. Nat Rev Microbiol 10: 255–265.
20. WanY, QuK, OuyangZ, KerteszM, LiJ, et al. (2012) Genome-wide measurement of RNA folding energies. Mol Cell 48: 169–181.
21. LeachMD, TycKM, BrownAJP, KlippE (2012) Modelling the regulation of thermal adaptation in Candida albicans, a major fungal pathogen of humans. PLoS ONE 7: e32467 doi:10.1371/journal.pone.0032467.
22. CraigEA, JacobsenK (1984) Mutations of the heat inducible 70 kilodalton genes of yeast confer temperature sensitive growth. Cell 38: 841–849.
23. TaipaleM, KrykbaevaI, KoevaM, KayatekinC, WestoverKD, et al. (2012) Quantitative analysis of Hsp90-client interactions reveals principles of substrate recognition. Cell 150: 987–1001.
24. DuinaAA, KaltonHM, GaberRF (1998) Requirement for Hsp90 and a CyP-40-type cyclophilin in negative regulation of the heat shock response. J Biol Chem 273: 18974–18978.
25. LeachMD, BudgeS, WalkerL, MunroC, CowenLE, et al. (2012) Hsp90 orchestrates transcriptional regulation by Hsf1 and cell wall remodelling by MAPK signalling during thermal adaptation in a pathogenic yeast. PLoS Pathog 8: e1003069 doi:10.1371/journal.ppat.1003069.
26. LeachMD, KlippE, CowenLE, BrownAJ (2012) Fungal Hsp90: A biological transistor that tunes cellular outputs to thermal inputs. Nat Rev Microbiol 10: 693–704.
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2013 Číslo 3
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- Escapes Fumagillin Control in Honey Bees
- TIM-3 Does Not Act as a Receptor for Galectin-9
- Influenza Virus Aerosols in Human Exhaled Breath: Particle Size, Culturability, and Effect of Surgical Masks
- Redefining the Immune System as a Social Interface for Cooperative Processes