Aggressive Chemotherapy and the Selection of Drug Resistant Pathogens
Drug resistant pathogens are one of the key public health challenges of the 21st century. There is a widespread belief that resistance is best managed by using drugs to rapidly eliminate target pathogens from patients so as to minimize the probability that pathogens acquire resistance de novo. Yet strong drug pressure imposes intense selection in favor of resistance through alleviation of competition with wild-type populations. Aggressive chemotherapy thus generates opposing evolutionary forces which together determine the rate of drug resistance emergence. Identifying treatment regimens which best retard resistance evolution while maximizing health gains and minimizing disease transmission requires empirical analysis of resistance evolution in vivo in conjunction with measures of clinical outcomes and infectiousness. Using rodent malaria in laboratory mice, we found that less aggressive chemotherapeutic regimens substantially reduced the probability of onward transmission of resistance (by >150-fold), without compromising health outcomes. Our experiments suggest that there may be cases where resistance evolution can be managed more effectively with treatment regimens other than those which reduce pathogen burdens as fast as possible.
Vyšlo v časopise:
Aggressive Chemotherapy and the Selection of Drug Resistant Pathogens. PLoS Pathog 9(9): e32767. doi:10.1371/journal.ppat.1003578
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1003578
Souhrn
Drug resistant pathogens are one of the key public health challenges of the 21st century. There is a widespread belief that resistance is best managed by using drugs to rapidly eliminate target pathogens from patients so as to minimize the probability that pathogens acquire resistance de novo. Yet strong drug pressure imposes intense selection in favor of resistance through alleviation of competition with wild-type populations. Aggressive chemotherapy thus generates opposing evolutionary forces which together determine the rate of drug resistance emergence. Identifying treatment regimens which best retard resistance evolution while maximizing health gains and minimizing disease transmission requires empirical analysis of resistance evolution in vivo in conjunction with measures of clinical outcomes and infectiousness. Using rodent malaria in laboratory mice, we found that less aggressive chemotherapeutic regimens substantially reduced the probability of onward transmission of resistance (by >150-fold), without compromising health outcomes. Our experiments suggest that there may be cases where resistance evolution can be managed more effectively with treatment regimens other than those which reduce pathogen burdens as fast as possible.
Zdroje
1. Fleming A (1964) Penicillin. Nobel Lectures, Physiology or Medicine 1942–1962. Amsterdam: Elsevier Publishing Company.
2. World Health Organization (2011) World malaria report 2011. Geneva, Switzerland. Available: http://www.who.int/malaria/world_malaria_report_2011.
3. World Health Organization (2012) The evolving threat of antimicrobial resistance: options for action. Available: http://whqlibdoc.who.int/publications/2012/9789241503181_eng.pdf
4. World Health Organization (2011) Global tuberculosis control: WHO report 2011. Available: http://www.who.int/tb/publications/global_report/2011/gtbr11_full.pdf
5. DeeksSG, SmithM, HolodniyM, KahnJO (1997) HIV-1 protease inhibitors - A review for clinicians. J Am Med Assoc 277: 145–153.
6. StrattonCW (2003) Dead bugs don't mutate: Susceptibility issues in the emergence of bacterial resistance. Emerg Infect Dis 9: 10–16.
7. MartinezMN, PapichMG, DrusanoGL (2012) Dosing regimen matters: the importance of early intervention and rapid attainment of the pharmacokinetic/pharmacodynamic target. Antimicrob Agents Chemother 56: 2795–2805.
8. DrusanoGL, LiuW, BrownDL, RiceLB, LouieA (2009) Impact of short-course quinolone therapy on susceptible and resistant populations of Staphylococcus aureus. J Infect Dis 199: 219–226.
9. DrusanoGL (2004) Antimicrobial pharmacodynamics: Critical interactions of ‘bug and drug’. Nat Rev Microbiol 2: 289–300.
10. CondraJH, EminiEA (1997) Preventing HIV-1 drug resistance. Sci Med 4: 14–23.
11. RobertsJA, KrugerP, PatersonDL, LipmanJ (2008) Antibiotic resistance - What's dosing got to do with it? Crit Care Med 36: 2433–2440.
12. zur WieschPA, KouyosR, EngelstadterJ, RegoesRR, BonhoefferS (2011) Population biological principles of drug-resistance evolution in infectious diseases. Lancet Infect Dis 11: 236–247.
13. Rapoff MA (2010) Adherence to pediatric medical regimens, Second Edition. Dordrecht: Springer. 231 p.
14. Crow JF, Kimura M (1970) An introduction to population genetics theory. New York: Harper and Row. 591 p.
15. ReadAF, DayT, HuijbenS (2011) The evolution of drug resistance and the curious orthodoxy of aggressive chemotherapy. Proc Natl Acad Sci USA 108: 10871–10877.
16. de RoodeJC, CulletonR, BellAS, ReadAF (2004) Competitive release of drug resistance following drug treatment of mixed Plasmodium chabaudi infections. Malar J 3: 33.
17. GerrishPJ, LenskiRE (1998) The fate of competing beneficial mutations in an asexual population. Genetica 102–3: 127–144.
18. MirallesR, GerrishPJ, MoyaA, ElenaSF (1999) Clonal interference and the evolution of RNA viruses. Science 285: 1745–1747.
19. ReadAF, TaylorLH (2001) The ecology of genetically diverse infections. Science 292: 1099–1102.
20. HastingsIM (1997) A model for the origins and spread of drug-resistant malaria. Parasitology 115: 133–141.
21. MackinnonMJ, HastingsIM (1998) The evolution of multiple drug resistance in malaria parasites. Trans R Soc Trop Med Hyg 92: 188–195.
22. HastingsIM, D'AlessandroU (2000) Modelling a predictable disaster: The rise and spread of drug-resistant malaria. Parasitol Today 16: 340–347.
23. HastingsIM (2006) Complex dynamics and stability of resistance to antimalarial drugs. Parasitology 132: 615–624.
24. MackinnonMJ (2005) Drug resistance models for malaria. Acta Trop 94: 207–217.
25. LipsitchM, SamoreMH (2002) Antimicrobial use and antimicrobial resistance: a population perspective. Emerg Infect Dis 8: 347–354.
26. BellAS, HuijbenS, PaaijmansKP, SimDG, ChanBHK, et al. (2012) Enhanced transmission of drug-resistant parasites to mosquitoes following drug treatment in rodent malaria. PLoS One 7: e37172.
27. WargoAR, HuijbenS, de RoodeJC, ShepherdJ, ReadAF (2007) Competitive release and facilitation of drug-resistant parasites after therapeutic chemotherapy in a rodent malaria model. Proc Natl Acad Sci USA 104: 19914–19919.
28. HuijbenS, NelsonWA, WargoAR, SimDG, ReadAF (2010) Chemotherapy, within-host ecology and the fitness of drug-resistant malaria parasites. Evolution 64: 2952–2968.
29. GeliP, LaxminarayanR, DunneM, SmithDL (2012) “One-Size-Fits-All”? Optimizing treatment duration for bacterial infections. PLoS One 7: e29838.
30. AarestrupF (2012) Get pigs off antibiotics. Nature 486: 465–466.
31. ScaleraNM, FileTMJr (2007) How long should we treat community-acquired pneumonia? Curr Opin Infect Dis 20: 177–181.
32. el MoussaouiR, de BorgieC, van den BroekP, HustinxWN, BresserP, et al. (2006) Effectiveness of discontinuing antibiotic treatment after three days versus eight days in mild to moderate-severe community acquired pneumonia: randomised, double blind study. Br Med J 332: 1355–1358.
33. KakiR, ElligsenM, WalkerS, SimorA, PalmayL, et al. (2011) Impact of antimicrobial stewardship in critical care: a systematic review. J Antimicrob Chemother 66: 1223–1230.
34. PughR, GrantC, CookeRPD, DempseyG (2011) Short-course versus prolonged-course antibiotic therapy for hospital-acquired pneumonia in critically ill adults. Cochrane Database Syst Rev Cd007577.
35. KarageorgopoulosDE, ValkimadiPE, KapaskelisA, RafailidisPI, FalagasME (2009) Short versus long duration of antibiotic therapy for bacterial meningitis: a meta-analysis of randomised controlled trials in children. Arch Dis Child 94: 607–614.
36. MolyneuxE, NizamiSQ, SahaS, HuuKT, AzamM, et al. (2011) 5 versus 10 days of treatment with ceftriaxone for bacterial meningitis in children: a double-blind randomised equivalence study. Lancet 377: 1837–1845.
37. EspositoS, TagliabueC, PicciolliI, SeminoM, SabatiniC, et al. (2011) Procalcitonin measurements for guiding antibiotic treatment in pediatric pneumonia. Respir Med 105: 1939–1945.
38. LipsitchM, LevinBR (1997) The population dynamics of antimicrobial chemotherapy. Antimicrob Agents Chemother 41: 363–373.
39. TamVH, LouieA, DezielMR, LiuW, DrusanoGL (2007) The relationship between quinolone exposures and resistance amplification is characterized by an inverted U: A new paradigm for optimizing pharmacodynamics to counterselect resistance. Antimicrob Agents Chemother 51: 744–747.
40. DrusanoGL, LiuW, FregeauC, KulawyR, LouieA (2009) Differing effects of combination chemotherapy with meropenem and tobramycin on cell kill and suppression of resistance of wild-type pseudomonas aeruginosa PAO1 and its isogenic MexAB efflux pump-overexpressed mutant. Antimicrob Agents Chemother 53: 2266–2273.
41. HandelA, MargolisE, LevinBR (2009) Exploring the role of the immune response in preventing antibiotic resistance. J Theor Biol 256: 655–662.
42. LucianiF, SissonSA, JiangHL, FrancisAR, TanakaMM (2009) The epidemiological fitness cost of drug resistance in Mycobacterium tuberculosis. Proc Natl Acad Sci USA 106: 14711–14715.
43. WoottonJC, FengXR, FerdigMT, CooperRA, MuJB, et al. (2002) Genetic diversity and chloroquine selective sweeps in Plasmodium falciparum. Nature 418: 320–323.
44. TalisunaAO, BlolandP, D'AlessandroU (2004) History, dynamics, and public health importance of malaria parasite resistance. Clin Microbiol Rev 17: 235–254.
45. GatenbyRA (2009) A change of strategy in the war on cancer. Nature 459: 508–509.
46. GatenbyRA, SilvaAS, GilliesRJ, FriedenBR (2009) Adaptive therapy. Cancer Res 69: 4894–4903.
47. SilvaAS, KamY, KhinZP, MintonSE, GilliesRJ, et al. (2012) Evolutionary approaches to prolong progression-free survival in breast cancer. Cancer Res 72: 6362–6370.
48. HegrenessM, ShoreshN, DamianD, HartlD, KishonyR (2008) Accelerated evolution of resistance in multidrug environments. Proc Natl Acad Sci USA 105: 13977–13981.
49. Pena-MillerR, LaehnemannD, JansenG, Fuentes-HernadezA, RosenstielP, et al. (in press) When the most potent combination of antibiotics selects for the greatest bacterial load: the smile –frown transition. PLoS Biol 11: e1001540.
50. MideoN, BarclayVC, ChanBHK, SavillNJ, ReadAF, et al. (2008) Understanding and predicting strain-specific patterns of pathogenesis in the rodent malaria Plasmodium chabaudi. Am Nat 172: E214–E238.
51. WhiteNJ (2008) Qinghaosu (Artemisinin): The price of success. Science 320: 330–334.
52. SchneiderP, ChanBHK, ReeceSE, ReadAF (2008) Does the drug sensitivity of malaria parasites depend on their virulence? Malar J 7: 257.
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2013 Číslo 9
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- Memory of Infections: An Emerging Role for Natural Killer Cells
- Emergence of the Middle East Respiratory Syndrome Coronavirus
- Emerging and Emerged Pathogenic Species: Beyond the Paradigm
- Death Be Not Proud—Cell Death Control in Plant Fungal Interactions