#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Hemodynamic changes in prone position – a non‑invasive physiological study


Authors: L. Kukrálová;  V. Dostálová;  P. Dostál
Authors place of work: Fakultní nemocnice Hradec Králové ;  Klinika anesteziologie, resuscitace a intenzivní medicíny, Univerzita Karlova, Lékařská fakulta v Hradci Králové
Published in the journal: Anest. intenziv. Med., 32, 2021, č. 2, s. 82-86
Category: Original Article

Summary

Background and Goal of the study: The aim of this physiological study was to observe changes in cardiac output and other hemodynamic parameters after proning and to compare hemodynamic profile of prone position with and without chest and pelvic support.

Type of study: Prospective, observational study.

Setting: Clinical laboratory of a university hospital.

Material and Methods: Twelve healthy volunteers older than 18 years were included in the study. Non-invasive hemody namic measurement was initiated using ClearSight/EV 1000 system in supine position (S position). Cardiac index (CI), stroke volume index (SVI), stroke volume variation (SVV), systemic vascular resistance index (SVRI) and mean arterial pressure (MAP) were recorded. Following parameters were measured using ultrasound at predefined sites: expiratory area of v. cephalica (sVCe), v. saphena (sVSe), v. jugularis interna (sVJe), expiratory and inspiratory area (sVCIe a sVCIi), and maximum and minimum diameter (dVCImax a dVCImin) of v. cava inferior and index of colapsibility (VCI CI) were calculated. Corrected carotid flow time (ccFT) was measured using a Doppler ultrasound. All measurements were repeated in unsupported (P1 position) and supported (P2 position) prone positions with supported chest and pelvic regions.

Results and Discussion: There were no differences in CI, SVI, SVV and ccFT values between positions. Significantly different values of MAP and VCI CI were observed between positions. Higher SVRI in P1 position in comparison with S position, higher sVJe in prone positions and lower dVCImin in P2 position in comparison with P1 position were recorded.

Conclusion: No differences in cardiac output and preload were detected after proning in unsedated healthy volunteers. Prone position was associated with changes of systemic vascular resistance, blood stagnation in jugular catchment area and, in unsupported prone position, increased collapsibility of inferior vena cava.

Keywords:

prone position – Cardiac output – preload


Zdroje

1. Dharmavaram S, Jellish WS, Nockels RP, Shea J, Mehmood R, Ghanayem A, et al. Effect of prone positioning systems on hemodynamic and cardiac function during lumbar spine surgery: an echocardiographic study. Spine (Phila Pa 1976). 2006; 31(12): 1388–1393; discussion 1394. doi: 10.1097/01.brs.0000218485.96713. 44.

2. Chui J, Craen RA. An update on the prone position: Continuing Professional Development. Can J Anaesth. 2016; 63(6): 737–767. English. doi: 10.1007/s12630-016-0634-x.

3. Yokoyama M, Ueda W, Hirakawa M, Yamamoto H. Hemodynamic effect of the prone position during anesthesia. Acta Anaesthesiol Scand. 1991; 35(8): 741–744. doi: 10.1111/ j.1399-6576.1991.tb03382.x.

4. Toyota S, Amaki Y. Hemodynamic evaluation of the prone position by transesophageal echocardiography. J Clin Anesth. 1998; 10(1): 32–35. doi: 10.1016/s0952-8180(97)00216-x.

5. Shimizu M, Fujii H, Yamawake N, Nishizaki M. Cardiac function changes with switching from the supine to prone position: analysis by quantitative semiconductor gated single‑photon emission computed tomography. J Nucl Cardiol. 2015; 22(2): 301–307. doi: 10.1007/ s12350-014-0058-3.

6. Edgcombe H, Carter K, Yarrow S. Anaesthesia in the prone position. Br J Anaesth. 2008; 100(2): 165–183. doi: 10.1093/bja/aem380.

7. Park CK. The effect of patient positioning on intraabdominal pressure and blood loss in spinal surgery. Anesth Analg. 2000; 91(3): 552–557. doi: 10.1097/00000539-200009000- 00009.

8. Barash PG, Cullen FB, Stoelting KR, Cahalan MK, Stock Ch. (eds). Klinická anesteziologie. Překlad 6. vydání. Praha: Grada; 2015.

9. ClearSight system – Noninvasive hemodynamic monitoring [on‑ line]. [cit. 2020-07-24]. Dostupné z: https://www.edwards.com/devices/Hemodynamic‑Monitoring/ clearsight.

10. Ameloot K, Palmers PJ, Malbrain ML. The accuracy of noninvasive cardiac output and pressure measurements with finger cuff: a concise review. Curr Opin Crit Care 2015; 21(3): 232–239. doi:10.1097/MCC.0000000000000198.

11. Fischer MO, Joosten A, Desebbe O, Boutros M, Debroczi S, Broch O, et al. Interchangeability of cardiac output measurements between non‑ invasive photoplethysmography and bolus thermodilution: A systematic review and individual patient data meta‑analysis. Anaesth Crit Care Pain Med. 2020; 39(1): 75–85. doi: 10.1016/j.accpm.2019. 05. 007.

12. Boisson M, Poignard ME, Pontier B, Mimoz O, Debaene B, Frasca D. Cardiac output monitoring with thermodilution pulse‑contour analysis vs. non‑ invasive pulse‑contour analysis. Anaesthesia. 2019; 74(6): 735–740. doi: 10.1111/anae.14638.

13. Rauch S, Schenk K, Gatterer H, Erckert M, Oberhuber L, Bliemsrieder B, et al. Venous Pooling in Suspension Syndrome Assessed with Ultrasound. Wilderness Environ Med. 2020; 31(2): 204–208. doi: 10.1016/j.wem.2019. 08. 012.

14. Yokoyama M, Ueda W, Hirakawa M, Yamamoto H. Hemodynamic effect of the prone position during anesthesia. Acta Anaesthesiol Scand. 1991; 35(8): 741–744. doi: 10.1111/ j.1399-6576.1991.tb03382.x.

15. Blehar DJ, Glazier S, Gaspari RJ. Correlation of corrected flow time in the carotid artery with changes in intravascular volume status. J Crit Care. 2014; 29(4): 486–488. doi: 10.1016/j.jcrc.2014. 03. 025.

16. Mackenzie DC, Khan NA, Blehar D, Glazier S, Chang Y, Stowell ChP, et al. Carotid Flow Time Changes With Volume Status in Acute Blood Loss. Annals of Emergency Medicine. 2015; 66(3): 277–282. doi: org/10.1016/j.annemergmed.2015. 04. 014.

17. Kim D‑H, Shin S, Kim N, Choi T, Choi SH, Choi YS. Carotid ultrasound measurements for assessing fluid responsiveness in spontaneously breathing patients: corrected flow time and respirophasic variation in blood flow peak velocity. British Journal of Anaesthesia 2018; 121(3): 541–549. doi: 10.1016/j.bja.2017. 12. 047.

18. Chebl RB, Wuhantu J, Kiblawi S, Dagher GA, Zgheib H, Bachir R, et al. Corrected carotid flow time and passive leg raise as a measure of volume status. Am J Emerg Med. 2019 Aug; 37(8): 1460–1465. doi: 10.1016/j.ajem.2018. 10. 047.

19. Barjaktarevic I, Toppen WE, Hu S, Aquije Montoya E, Ong S, Buhr R, et al. Ultrasound Assessment of the Change in Carotid Corrected Flow Time in Fluid Responsiveness in Undifferentiated Shock. Crit Care Med. 2018; 46(11): e1040–e1046. doi: 10.1097/ CCM.0000000000003356.

20. Payam M, Hooman H‑N. Calculation of corrected flow time: Wodey’s formula vs. Bazett’s formula, J Critical Care 2018; 44: 154–155. doi: 0.1016/j.jcrc.2017. 10. 046.

21. Лизогуб М. Postural hemodynamic changes after turning to prone position. Science- Rise 2015; 3(4(8)): 71–74. doi: http://dx.doi.org/10.15587/2313-8416.2015.39269.

22. Yap K, Campbell P, Cherk M, McGrath C, Kalff V. Effect of prone versus supine positioning on left ventricular ejection fraction (LVEF) and heart rate using ECG gated Tl-201 myocardial perfusion scans and gated cardiac blood pool scans. J Med Imaging Radiat Oncol. 2012; 56(5): 525–531. doi: 10.1111/j.1754-9485.2012.02438.x.

23. Pang CC. Autonomic control of the venous system in health and disease: effects of drugs. Pharmacol Ther. 2001; 90(2–3): 179–230. doi: 10.1016/s0163-7258(01)00138-3.

24. Cohn JN. Sympathetic nervous system activity and the heart. Am J Hypertens. 1989; 2(12 Pt 2): 353S–356S.

25. Pinsky MR. Cardiovascular issues in respiratory care. Chest. 2005; 128(5 Suppl 2): 592S–597S. doi: 10.1378/chest.128.5_suppl_2.592S.

26. Palmon SC, Kirsch JR, Depper JA, Toung TJ. The effect of the prone position on pulmonary mechanics is frame‑dependent. Anesth Analg. 1998; 87(5): 1175–1180. doi: 10.1097/00000539-199811000-00037.

27. Gill B, Heavner JE. Postoperative visual loss associated with spine surgery. Eur Spine J. 2006; 15(4): 479–484. doi: 10.1007/s00586-005-0914-6.

28. Shriver MF, Xie JJ, Tye EY, Rosenbaum BP, Kshettry VR, Benzel EC, et al. Lumbar microdiscectomy complication rates: a systematic review and meta‑analysis. Neurosurg Focus. 2015; 39(4): E6. doi: 10.3171/2015. 7. FOCUS15281.

Štítky
Anaesthesiology, Resuscitation and Inten Intensive Care Medicine
Článek Odpověď
Článek Odpověď

Článok vyšiel v časopise

Anaesthesiology and Intensive Care Medicine

Číslo 2

2021 Číslo 2

Najčítanejšie v tomto čísle
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#