#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Biochemical Essence of Aging


Authors: J. Pláteník
Authors place of work: Ústav lékařské biochemie a laboratorní diagnostiky 1. LF UK a VFN, Praha
Published in the journal: Klin. Biochem. Metab., 28, 2020, No. 4, p. 132-138

Summary

Aging can be defined as progressive and irreversible loss of vitality and increasing mortality coming inescapably with age. It is a stochastic process, rather than a program. The biochemical essence of aging lies in impossibility to prevent accumulation of random errors in important biomolecules, such as DNA and proteins. In the complicated process of aging, there are roles for reactive oxygen species, mitochondrial dysfunction, reactive carbonyls, and damage to genomic DNA including telomeres, epigenetic alterations, cell senescence, and collapse of proteostasis. Although all tissues of human body age, the biological limits of maintenance and repair affect the non-dividing cells the most. As the key organs of human body, brain, heart, and skeletal muscle, are based on postmitotic cells, a human being in his biological body can never reach immortality. Within the biological limits, organisms are equipped with important adaptable mechanisms for body maintenance and repair, such as stress-induced cellular resistance to stress (hormesis), autophagy and DNA damage response. Insight into these mechanisms provides rationale for benefits of life style interventions, such as caloric restriction and physical exercise, and in future might even bring drugs that could slow aging.

Keywords:

reactive oxygen species – mitochondria – pyruvaldehyde – DNA damage – proteostasis


Zdroje

1.    Lane, N.: Oxygen. The Molecule that made the World. New York: Oxford University Press, Inc., 2003, 374 s. ISBN 0-19-860783-0.

2.    Kirkwood, T. B. L., Austad, S. N.:  Why do we age? Nature, 2000, 408, p. 233-238.

3.    Yin, D., Chen, K.: The essential mechanisms of aging: Irreparable damage accumulation of biochemical side-reactions. Exp. Geront., 2005, 40, p. 455-465.

4.    Dong, X., Milholland, B., Vijg, J.: Evidence for a limit to human lifespan. Nature, 2016, 538, p. 257-259.

5.    Skulachev, M. V., Skulachev, V. P.: Programmed aging of mammals: Proof of concept and prospects of biochemical approaches for anti-aging therapy. Biochemistry (Moscow), 2017, 82, p. 1403-1422.

6.    Kowald, A., Kirkwood, T. B. L.: Can aging be programmed? A critical literature review. Aging Cell, 2016, 15, p. 986-998.

7.    Halliwell, B., Gutteridge, J. M. C.: Free Radicals in Biology and Medicine. New York: Oxford University Press, Inc., 4. vydání, 2007, 851 s. ISBN 917-0-19-856868-1.

8.    Finkel, T., Holbrook, N. J.: Oxidants, oxidative stress and the biology of ageing. Nature, 2000, 408, p. 239-247.

9.    Hagen, T. M.: Oxidative stress, redox imbalance, and the aging process. Antioxid. Redox Signal., 2003, 5, p. 503-506.

10.  Bratic, A., Larsson, N.-G.: The role of mitochondria in aging. J. Clin. Invest., 2013, 123, p. 951-957.

11.  Kauppila, T. E. S., Kauppila, J. H. K., Larsson, N. G.: Mammalian mitochondria and aging: An update. Cell Metab., 2017, 25, p. 57-71.

12.  Pomatto, L. C. D., Davies, K. J. A.: Adaptive homeostasis and the free radical theory of ageing. Free Radic. Biol. Med., 2018, 124, p. 420-430.

13.  Le Bourg, E.: Hormesis, aging and longevity. Biochim. Biophys. Acta, 2009, 1790, p. 1030-1039.

14.  Kowald, A., Kirkwood, T. B. L.: A network theory of ageing: the interactions of defective mitochondria, aberrant proteins, free radicals and scavengers in the ageing process. Mutat. Res. 1996, 316, p. 209-236.

15.  Trifunovic, A., Wredenberg, A., Falkenberg, M. et al.: Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 2004, 429, p. 417-423.

16.  Akbari, M., Kirkwood, T. B. L., Bohr, V. A.: Mitochondria in the signaling pathways that control longevity and health span. Ageing Res. Rev. 2019, 54, ID 100940, p. 1-18.

17.  Kincaid, B., Bossy-Wetzel, E.: Forever young: SIRT3 a shield against mitochondrial meltdown, aging, and neurodegeneration. Front. Aging Neurosci. 2013, 5, ID 48, p. 1-13.

18.  Kalousová, M., Zima, T., Tesař, V., Dusilová-Sulková, S., Škrha, J.: Advanced-glycoxidation end products in chronic diseases-clinical chemistry and genetic background. Mutat. Res. 2005, 579, p. 37-46.

19.  Rabbani, N., Thornalley, P. J.: Dicarbonyl stress in cell and tissue dysfunction contributing to ageing and disease. Biochem. Biophys. Res. Commun. 2015, 458, p. 221-226.

20.  Nigro, C., Leone, A., Fiory, F. et al.: Dicarbonyl stress at the crossroads of healthy and unhealthy aging. Cells 2019, 8, ID 749, p. 1-27.

21.  Kold-Christensen, R., Johanssen, M.: Methylglyoxal metabolism and aging-related disease: moving from correlation toward causation. Trends Endocrinol. Metab. 2020, 31, p. 81-92.

22.  Morcos, M., Du, X., Pfisterer, F. et al.: Glyoxalase-1 prevents mitochondrial protein modification and enhances lifespan in Caenorhabditis elegans. Aging Cell 2008, 7, p. 260-269.

23.  De Bont, R., van Larebeke, N.: Endogenous DNA damage in humans: a review of quantitative data. Mutagenesis 2004, 19, p. 169-185.

24.  White, R. R., Vijg, J.: Do DNA double-strand breaks drive aging? Mol. Cell 2016, 63, p. 729-738.

25.  Ou, H.-L., Schumacher, B.: DNA damage responses and p53 in the aging process. Blood 2018, 131, p. 488-495.

26.  Armstrong, G. T., Kawashima, T., Leisenring, W. et al.: Aging and risk of severe, disabling, life-threatening, and fatal events in the childhood cancer survivor study. J Clin. Oncol. 2014, 32, p. 1218-1227.

27.  Booth, L. N., Brunet, A.: The aging epigenome. Mol. Cell 2016, 62, p. 728-744.

28.  Horvath, S., Raj, K.: DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat. Rev. Genet. 2018, 19, p. 371-384.

29.  Goyns, M. H., Lavery, W. L.: Telomerase and mammalian ageing: a critical appraisal. Mech. Ageing Dev. 2000, 114, p. 69-77.

30.  Victorelli, S., Passos, J. F.: Telomeres and cell senescence – size matters not. EBioMedicine 2017, 21, p. 14-20.

31.  Von Zglinicki, T.: Oxidative stress shortens telomeres. Trends Biochem. Sci. 2002, 27, p. 339-344.

32.  McHugh, D., Gil, J.: Senescence and aging: Causes, consequences, and therapeutic avenues. J. Cell Biol. 2018, 217, p. 65-77.

33.  Santra, M., Dill, K. A., de Graf, A. M. R.: Proteostasis collapse is a driver of cell aging and death. PNAS 2019, 116, p. 22173-22178.

34.  Terman, A., Gustafsson, B., Brunk, U. T.: Autophagy, organelles and ageing. J. Pathol. 2007, 211, p. 134-143.

35.  Rubinsztein, D. C., Mariño, G., Kroemer, G.: Autophagy and aging. Cell 2011, 146, p. 682-695.

Štítky
Clinical biochemistry Nuclear medicine Nutritive therapist
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#