New Radiopharmaceuticals and Positron-emission Tomography Applications at the Masaryk Memorial Cancer Institute in Brno
Authors:
J. Adam 1; P. Andres 2; K. Bolčák 3; M. Čermáková 1; R. Demlová 4; L. Dubská 5; Š. Sedláčková 1; D. Valík 5
Authors place of work:
Ústavní lékárna, MOÚ Brno 2Odbor léčebně preventivní péče, MOÚ Brno 3Oddělení nukleární medicíny, MOÚ Brno 4Oddělení klinických hodnocení, MOÚ Brno 5Oddělení laboratorní medicíny, MOÚ Brno
1
Published in the journal:
Klin Onkol 2009; 22(3): 94-97
Category:
Reviews
Summary
The construction and launch of the cyclotron & PET centre at the Masaryk Memorial Cancer Institute, which is run in cooperation with the Nuclear Research Institute Praha Řež, allows the Masaryk Memorial Cancer Institute to engage in the research, development and application of new radiopharmaceuticals including compounds labelled by short living positron emitters (especially 11C). For the immediate future, new projects are planned, e.g. using the proliferation marker 18F-fluoro L-thymidine, or neuro oncological studies using the proteosynthesis and amino acid transport marker 11C-methionine, and eventually also other compounds applicable outside of oncology. The existence of the PET centre at the Masaryk Memorial Cancer Institute therefore offers a wide range of possibilities to both patients and physicians in the Brno region and beyond.
Key words:
positron-emission tomography – radioactive tracers – cyclotrons
Zdroje
1. Nishikawa J. The Application of Pet to the Bacic and Clinical Research. J Radiat Res 1988; 29(1): 11.
2. Moser E, Vankaick G. Pet – Clinical-Application. Radiologe 1992; 32(6): 261.
3. Herzog H. PET instrumentation, modelling and clinical application. Proceedings of the Workshop on Ion and Slow Positron Beam Utilisation. 1999: 225–232.
4. Bockisch A, Beyer T, Antoch G et al. Principles of PET/CT and clinical application. Radiologe 2004; 44(11): 1045.
5. Becquerel J. Discovery of Radioactivity. Nature 1948; 161(4094): 609.
6. Smith AM. On the Theory of Beta Radioactivity. Philosophical Magazine 1952; 43(344): 915–933.
7. Vallebona A. Nouvelle Methode Roentgenstratigraphique. Schweizerische Medizinische Wochenschrift 1948; 78(14): 341.
8. Rossi F, Vallebona A, Capurro S et al. Topographical Human Anatomy in Radiograms and Stratigrams of Serial Sections. Acta Anatomica 1954; 22(4): 336–345.
9. Vallebona A. 3 Dimensional Stratigraphic Examination – Axial Transverse Stratigraphy 1. Am J Roentgenol Radium Ther Nucl Med 1955; 74(5): 769–776.
10. Ambrose J, Hounsfie.G. Computerized Transverse Axial Tomography. Br J Radiol 1973; 46(542): 148–149.
11. Hounsfie GN. Computerized Transverse Axial Scanning (Tomography) 1. Description of System. Br J Radiol 1973; 46(552): 1016–1022.
12. Hoffman EJ, Phelps ME. Positron Emission Tomography. Medical Instrumentation 1979; 13(3): 147–151.
13. Agool A, Schot BW, Jager PL et al. 18F-FLT PET in hematologic disorders: A novel technique to analyze the bone marrow compartment. J Nucl Med 2006; 47(10): 1592–1598.
14. Vellenga E, Agool A, Schot B et al. FLT-PET in haematological disorders: A novel technique to analyze the proliferative activity of the bone marrow compartment. Blood 2006; 108(11): 739a–740a.
15. Rajendran JG, Peterson LE, Schwartz DL et al. (FMISO)-F-18 PET hypoxia imaging in head and neck cancer: Heterogeneity in hypoxia – Primary tumor vs lymph nodal metastases. J Nucl Med 2002; 43(5): 73p–74p.
16. Thorwarth D, Alber M. Quantification of tumour hypoxia by [18F]-Fmiso PET and the correlation to treatment outcome. Radiother Oncol 2004; 73: S173.
17. Spence AM, Muzi M, Mrugala MM et al. [F-18]-fluoromisonidazole (FMISO) PET demonstrates reduced hypoxia in recurrent malignant gliomas that respond to bevacizurnab and irinotecan. Mol Cancer Ther 2007; 6(12): 3439s.
18. Hicks RJ, Rischin D, Fisher R et al. Utility of FMISO PET in advanced head and neck cancer treated with chemoradiation incorporating a hypoxia-targeting chemotherapy agent. Eur J Nucl Med Mol Imaging 2005; 32(12): 1384–1391.
19. Mankoff DA, Link JM, Stekhova S et al. Estrogen receptor (ER) imaging in breast cancer using [F-18]-fluoroestradiol (FES) PET: Predicting the response of advanced disease to endocrine drug therapy by measuring regional target expression. Clin Cancer Res 2003; 9(16): 6239s.
20. Degrado TR, Baldwin SW, Orr MD et al. Preliminary metabolic studies with (18)Ffluorocholine (FCH), a novel oncologic probe for PET. J Nucl Med 2001; 42(5): 149p.
21. Heute DR, Putzer D, Uprimny C et al. Comparison of FET and FDG-PET in primary malignant brain tumours (WHO grade II to IV). Eur J Nucl Med Mol Imaging 2007; 34: S285.
22. Wester HJ, Dittmar C, Herz M et al. Synthesis and biological evaluation of O-(2-[F-18]fluoro ethyl)-(L)-tyrosine (FET): A potential PET tracer for amino acid transport. J Nucl Med 1997; 38(5): 756.
23. Hoh CK, Hawkins RA, Dahlbom M et al. Whole-Body Skeletal Imaging with [F-18] Fluoride-Ion and Pet. J Comput Assist Tomogr 1993; 17(1): 34–41.
24. Schiepers C, Wu HM, Nuyts J et al. F-18 fluoride PET: Is non invasive quantitation feasible with factor analysis? J Nucl Med 1997; 38(5): 343.
25. Hatakeyama T, Kawai N, Nishiyama Y et al. C-11-methionine (MET) and F-18-fluorothymidine (FLT) PET in patients with newly diagnosed glioma. Eur J Nucl Med Mol Imaging 2008; 35(11): 2009–2017.
26. Roelcke U, Radu EW, Vonammon K et al. Alteration of Blood-Brain Barrier in Human Brain Tumors – Comparison of[F-18]Fluorodeoxyglucose, [C-11] Methionine and Rb-82 Using Pet. J Neurol Sci 1995; 132(1): 20–27.
27. Nakada K. The role of methionine PET in oncology. Pet and Molecular Imaging: State of the Art and Future Perspectives 2004; 1264: 88–94.
28. Ehrin E, Farde L, Depaulis T et al. Preparation of C-11-Labelled Raclopride, a New Potent Dopamine Receptor Antagonist – Preliminary Pet Studies of Cerebral Dopamine-Receptors in the Monkey. Int J Appl Radiat Isot 1985; 36(4): 269.
29. Volonte MA, Moresco RM, Gobbo C et al. A PET study with [11-C]raclopride in Parkinson‘s disease: preliminary results on the effect of amantadine on the dopaminergic system. Neurol Sci 2001; 22(1): 107–108.
30. Morris MJ, Scher HI. C-11-acetate PET imaging in prostate cancer. Eur J Nucl Med Molr Imaging 2007; 34(2): 181–184.
31. Oyama N, Akino H, Kanamaru H et al. C-11-acetate PET imaging of prostate cancer. J Nucl Med 2002; 43(2): 181–186.
32. Oyama N, Tsuchiyama K, Kusukawa N et al. C-11-acetate pet imaging in renal tumor. J Urology 2008; 179(4): 376.
33. Tsuchida T, Takeuchi H, Okazawa H et al. Grading of brain glioma with 1-C-11-acetate PET: comparison with F-18-FDG PET. Nucl Med Biology 2008; 35(2): 171–176.
34. Rosamond TL, Abendschein D, Bergmann SR et al. The Metabolic-Fate of Labeled Palmitate in Ischemic Myocardium – Implications for Positron Emission Tomography (Pet). Circulation 1985; 72(4): 468.
35. Schelbert HR, Henze E, Keen R et al. Regional Fatty-Acid Metabolism in Acute Myocardial Ischemia Demonstrated Non-Invasively by C-11 Palmitate (Cpa) and Positron Tomography (Pet). Circulation 1982; 66(4): 126.
36. Virtanen KA, Iozzo P, Han C et al. Fatty acid uptake in various brain regions measured with [C-11]-palmitate, [F-18]FTHA and PET. Diabetologia 2005; 48: A89.
37. Kivelitz DE, Wilke NM, Bis KG et al. Quantitative MR first-pass versus N13-ammonia PET perfusion imaging in coronary artery disease. Radiology 1997; 205: 481.
38. Siegrist PT, Husmann L, Knabenhans M et al. N-13-ammonia myocardial perfusion imaging with a PET/CT scanner: impact on clinical decision making and cost effectiveness. Eur J Nucl Med Mol Imaging 2008; 35(5): 889–895.
39. Alpert NM, Rabito C, Berdichevsky D et al. Mapping of Local Renal Blood-Flow with Pet and O-15 Water. J Nucl Med 1993; 34(5): P51.
40. Hichwa RD, Watkins GL, Ponto LLB. Clinical Blood-Flow Measurements with 0-15 Water and Positron Emission Tomography (Pet). Abstr Pap Am Chem Soc 1993; 206: 132–NUCL.
41. Lodge MA, Carson RE, Carrasquillo JA et al. Parametric images of blood flow in oncology PET studies using [O-15]water. J Nucl Med 2000; 41(11): 1784–1792.
42. Li Z, Yipintsoi T, Caldwell JH et al. Single breath inhalation of [O-15]oxygen for estimating regional oxygen consumption in human hearts via PET. J Nucl Med 1996; 37(5): 645.
43. Mintun MA, Raichle ME, Martin WRW et al. Oxygen Utilization Measured by O-15 Radiotracers and Pet. J Nucl Med 1983; 24(5): P63.
44. Bree R, Borjesson PK, Jauw YWS et al. Immuno-PET with zirconium-89-labeled chimeric monoclonal antibody U36 in the detection of lymph node metastases in head and neck cancer patients. Radiother Oncol 2007; 82: S36.
45. Grunberg J, Novak-Hofer I, Honer M et al. In vivo evaluation of Lu-177- and Cu-67/64-labelled recombinant fragments of antibody chCE7 for radioimmunotherapy and PET imaging of L1-CAM-positive tumors. Clin Cancer Res 2005; 11(14): 5112–5120.
46. Shively JE, Bading J, Colcher D et al. Pet imaging with Cu-64 labeled humanized anti CEA antibody. Tumour Biol 2007; 28: 72.
Štítky
Paediatric clinical oncology Surgery Clinical oncologyČlánok vyšiel v časopise
Clinical Oncology
2009 Číslo 3
- Spasmolytic Effect of Metamizole
- Metamizole at a Glance and in Practice – Effective Non-Opioid Analgesic for All Ages
- Metamizole in perioperative treatment in children under 14 years – results of a questionnaire survey from practice
- Current Insights into the Antispasmodic and Analgesic Effects of Metamizole on the Gastrointestinal Tract
- Obstacle Called Vasospasm: Which Solution Is Most Effective in Microsurgery and How to Pharmacologically Assist It?
Najčítanejšie v tomto čísle
- Evaluation of Aromatase Inhibitors’ Side Effects in Clinical and Experimental Studies
- Clostridium Difficile Associated Diarrhoea –Problem of Oncological Patient?
- Use of PET/CT Examination in Head and Neck Cancer Radiotherapy Planning
- New Radiopharmaceuticals and Positron-emission Tomography Applications at the Masaryk Memorial Cancer Institute in Brno