Importance of Expression of DNA Repair Proteins in Non-Small-Cell Lung Cancer
Authors:
S. Rybárová 1; J. Muri 2; I. Hodorová 1; J. Vecanová 1; M. Benický 3; D. Piovarči 2; P. Janík 2; J. Mihalik 1; L. Mirossay 4
Authors place of work:
Ústav anatómie, LF UPJŠ, Košice, Slovenská republika
1; Národný ústav tuberkulózy, pľúcnych chorôb a hrudníkovej chirurgie, Vyšné Hágy, Slovenská Republika
2; Oddelenie patológie, UN L. Pasteura, Košice, Slovenská republika
3; Ústav farmakológie, LF UPJŠ, Košice, Slovenská republika
4
Published in the journal:
Klin Onkol 2012; 25(5): 370-374
Category:
Original Articles
Summary
Background:
Proteins XRCC1 and ERCC1 are involved in DNA repair. XRCC1 plays a role in DNA base excision repair and ERCC1 in nucleotide excision repair pathway. Higher expression profile of both proteins in cancer cells may contribute to development of drug resistance. ERCC1 is involved in removal of platinum adducts and might be a potential predictive and prognostic marker in NSCLC (non-small-cell lung cancer) treated with a cisplatin-based regimen. The purpose of study was determination of XRCC1 and ERCC1 levels and their correlation with basic clinicopathological parameters in NSCLC.
Patients and Methods:
In this study, 107 tumor samples diagnosed as NSCLC were immunohistochemically examined for expression of XRCC1 and ERCC1 proteins. Our results were compared to basic clinicopathological parameters: type of tumor, tumor grade and stage of disease. For statistical analysis, the chi-square test was used.
Results:
In squamous cell carcinoma and large cell carcinoma samples, the XRCC1 protein level was twofold higher (60% of positive samples) than in adenocarcinoma samples (35.5% of positive samples). We have found statistical correlation between XRCC1 protein expression and type of tumor (p = 0.0306). On the other hand, the statistical importance between the protein level versus grade and stage was not found. In the case of the ERCC1 protein, we observed the highest protein level in adenocarcinoma (64.5%) and squamous cell carcinoma (62.5%) samples. Next, we determined a significant difference in content of XRCC1 versus ERCC1 (35.5% vs 64.5%) in adenocarcinoma samples. Statistical chi-square test did not reveal any correlation between ERCC1 status and clinicopathological parameters.
Conclusion:
According to our results, XRCC1 represents an important mechanism of DNA repair in squamous cell and large cell carcinomas. Besides that, expression of XRCC1 was in correlation with type of tumor. In patients with adenocarcinoma and squamous cell carcinoma, we could assume increased resistance to platinum-based therapy because of high expectation of ERCC1 protein expression. However, its levels did not correlate with monitored clinicopathological parameters. The ERCC1 protein will be possibly an independent prognostic factor in NSCLC. To prove a true survival benefit of patients with expression of ERCC1, prospective validation of ERCC1 before clinical implication is needed in the future.
Key words:
DNA repair proteins – non-small-cell lung carcinoma – immunohistochemistry
Submitted:
29. 5. 2012
Accepted:
14. 7. 2012
Zdroje
1. Svoboda M, Fabian P, Slabý O et al. Cílená léčba bronchoalveolárního plicního adenokarcinomu inhibitory tyrozinkinázové aktivity EGFR: kazuistika klinicky promptní a výrazné odpovědi a přehled literatury. Klin Onkol 2010; 23(4): 224–230.
2. Fortini P, Pascucci B, Parlanti E et al. The base excision repair: mechanisms and its relevance for cancer susceptibility. Biochimie 2003; 85(11): 1053–1071.
3. Kweekel DM, Gelderblom H, Guchelaar J. Pharmacology of oxaliplatin and the use of pharmacogenomisc to individualize therapy. Cancer Treat Rev 2005; 31(2): 90–105.
4. Christmann M, Tomicic MT, Roos WP et al. Mechanisms of human DNA repair: an update. Toxicology 2003; 193(1–2): 3–34.
5. Campalans A, Marsin S, Nakabeppu Y et al. XRCC1 interactions with multiple DNA glycosylases: a model for its recruitment to base excision repair. DNA Repair 2005; 4(7): 826–835.
6. Caldecott KW. XRCC1 and DNA strand break repair. DNA Repair 2003; 2(9): 955–969.
7. Thompson LH, West MG. XRCC1 keeps DNA from getting stranded. Mutat Res 2000; 459(1): 1–18.
8. Duell EJ, Wiencke JK, Cheng TJ et al. Polymorphisms in the DNA repair genes XRCC1 and ERCC2 and biomarkers of DNA damage in human blood mononuclear cells. Carcinogenesis 2000; 21(5): 965–971.
9. Matullo G, Palli D, Peluso M et al. XRCC1, XRCC3, XPD gene polymorphisms, smoking, and p32-DNA adducts in a sample of healthy subjects. Carcinogenesis 2001; 22(9): 1437–1445.
10. Wang Y, Spitz MR, Zhu Y et al. From genotype to phenotype: correlating XRCC1 polymorphisms with mutagen sensitivity. DNA Repair 2003; 2(8): 901–908.
11. Mu D, Hsu DS, Sancar A. Reaction mechanism of human DNA repair excision nuclease. J Biol Chem 1996; 271(14): 8285–8294.
12. Sancar A. Mechanisms of DNA excision repair. Science 1994; 266(5193): 1954–1956.
13. Zamble DB, Mu D, Reardon JT et al. Repair of cisplatin--DNA adducts by the mammalian excision nuclease. Biochemistry 1996; 35(31): 10004–10013.
14. Isla D, Sarries C, Rosell R et al. Single nucleotide polymorphisms and outcome in docetaxel-cisplatin-treated advanced non-small-cell lung cancer. Ann Oncol 2004; 15(8): 1194–1203.
15. Ryu JS, Hong YC, Han HS et al. Association between polymorphisms of ERCC1 and XPD and survival in non--small-cell lung cancer patients treated with cisplatin combination chemotherapy. Lung Cancer 2004; 44(3): 311–316.
16. Suk R, Gurubhagavatula S, Park S et al. Polymorphisms in ERCC1 and grade 3 or 4 toxicity in non-small cell lung cancer patients. Clin Cancer Res 2005; 11(4): 1534–1538.
17. Zhou W, Gurubhagavatula S, Liu G et al. Excision repair cross-complementation group 1 polymorphism predicts overall survival in advanced non-small cell lung cancer patients treated with platinum-based chemotherapy. Clin Cancer Res 2004; 10(15): 4939–4943.
18. Goldstraw P. IASLC Manual – Staging Manual in Thoracic Oncology. Orange Park, FL: Editorial Rx Press 2009.
19. Groome PA, Bolejack V, Crowley JJ et al. The IASLC Lung Cancer Staging Project: validation of the proposals for revision of the T, N and M descriptors and consequent stage groupings in the forthcoming (seventh) edition TNM classification of malignant tumours. J Thorac Oncol 2007; 2(8): 694–705.
20. Giachino D, Ghio P, Regazzoni S et al. Prospective assessment of XPD Lys751Gln and XRCC1 Arg399Gln single nucleotide polymorphisms in lung cancer. Clin Cancer Res 2007; 13(10): 2876–2881.
21. Kang CH, Jang BG, Kim DW et al. The prognostic significance of ERCC1, BRCA1, XRCC1, and betaIII-tubulin expression in patients with non-small cell lung cancer treated by platinum- and taxane-based neoadjuvant chemotherapy and surgical resection. Lung Cancer 2010; 68(3): 478–483.
22. Matullo G, Dunning AM, Guarrera S et al. DNA repair polymorphisms and cancer risk in non-smokers in a cohort study. Carcinogenesis 2006; 27(5): 997–1007.
23. Kiyohara C, Takayama K, Nakanishi Y. Association of genetic polymorphisms in the base excision repair pathway with lung cancer risk: a meta-analysis. Lung Cancer 2006; 54(3): 267–283.
24. Olaussen KA, Mountzios G, Soria JC. ERCC1 as a risk stratifier in platinum-based chemotherapy for non-small--cell lung cancer. Curr Opin Pulm Med 2007; 13(4): 284–289.
25. Reed E. ERCC1 and clinical resistance to platinum-based therapy. Clin Cancer Res 2005; 11(17): 6100–6102.
26. Tepeli E, Caner V, Büyükpınarbaşılı N et al. Expression of ERCC1 and its clinicopathological correlations in non-small cell lung cancer. Mol Biol Rep 2012; 39(1): 335–341.
27. Hubner RA, Riley RD, Billingham LJ et al. Excision repair cross-complementation group 1 (ERCC1) status and lung cancer outcomes: a meta-analysis of published studies and recommendations. PLoS One 2011; 6(10): e25164.
28. Vilmar A, Santorini-Rugiu E, Sørensen JB. ERCC1, toxicity and quality of life in advanced NSCLC patients randomized in a large multicentre phase III trial. Eur J Cancer 2010; 46(9): 1554–1562.
29. Madhusudan S, Hickson ID. DNA repair inhibition: a selective tumour targeting strategy. Trends Mol Med 2005; 11(11): 503–511.
30. Ding J, Miao ZH, Meng LH et al. Emerging cancer therapeutic opportunities target DNA-repair systems. Trends Pharmacol Sci 2006; 27(6): 338–344.
Štítky
Paediatric clinical oncology Surgery Clinical oncologyČlánok vyšiel v časopise
Clinical Oncology
2012 Číslo 5
- Spasmolytic Effect of Metamizole
- Metamizole at a Glance and in Practice – Effective Non-Opioid Analgesic for All Ages
- Metamizole in perioperative treatment in children under 14 years – results of a questionnaire survey from practice
- Current Insights into the Antispasmodic and Analgesic Effects of Metamizole on the Gastrointestinal Tract
- Obstacle Called Vasospasm: Which Solution Is Most Effective in Microsurgery and How to Pharmacologically Assist It?
Najčítanejšie v tomto čísle
- Uterine Sarcomas – a Review
- Analysis of Prognostic Factors in Osteosarcoma Adult Patients, a Single Institution Experience
- Bloodstream Infections of the Intravascular Access Devices – Case Reports and Review of the Literature
- BRAF Mutation: a Novel Approach in Targeted Melanoma Therapy