New Findings in Methotrexate Pharmacology – Diagnostic Possibilities and Impact on Clinical Care
Authors:
Řiháček M. 1 3; Pilátová K. 1 3; J. Štěrba 1,3; Pilný R. 1 3; Valík D. 1 3
Authors place of work:
Klinika dětské onkologie LF MU a FN Brno
1; Oddělení laboratorní medicíny, Masarykův onkologický ústav, Brno
2; Regionální centrum aplikované molekulární onkologie, Masarykův onkologický ústav, Brno
3
Published in the journal:
Klin Onkol 2015; 28(3): 163-170
Category:
Reviews
doi:
https://doi.org/10.14735/amko2015163
Summary
Methotrexate is an anti-cancer drug used to treat several malignancies including pediatric acute lymphoblastic leukemia and choriocarcinoma. Despite recent advances in cancer chemotherapy, it remains a mainstay of therapy since its discovery in the early second half of the previous century. Moreover, low-dose methotrexate is a gold standard antirheumatic drug in the treatment of rheumatoid arthritis, psoriasis, systemic scleroderma and other autoimmune disorders. Side effects of methotrexate treatment are well known and described; however, their occurrence may often be unpredictable due to lack of specific biomarkers of toxicity. Methotrexate plasma levels are routinely monitored by therapeutic drug monitoring, nevertheless, occurrence and concentrations of its metabolites are not measured. During methotrexate treatment 7- hydroxymethotrexate and 2,4- diamino- N10- mehylpteroic acid appear in plasma. The latter can further be hydroxylated and glucuronidated resulting in five possible extracellular methotrexate metabolites. In addition, methotrexate is intracellularly converted to its active polyglutamylated forms. Therapeutic efficacy is dependent on formation of methotrexate polyglutamates as it keeps intracellular pool of the drug and enhances its affinity towards various target enzymes. In this study, we describe pharmacokinetic and pharmacodynamic characteristics of methotrexate metabolites. We also review methotrexate blood brain barrier transport to cerebrospinal fluid regarding its use in the prevention of leukemic central nervous system involvement and management of methotrexate toxicity with the use of carboxypeptidase- G2. Finally, we discuss laboratory methods for monitoring methotrexate metabolites and benefits of simultaneous determination of methotrexate and metabolites as possible biomarkers of therapeutic efficacy and clinical toxicity.
Key words:
methotrexate – 7- hydroxymethotrexate – toxicity – pharmacokinetics – drug monitoring – polyglutamates
This study was supported by European Regional Development Fund and the State budget of the Czech Republic for Regional Centre of Applied Molecular Oncology (RECAMO, CZ.1.05/2.1.00/03.0101), by the project MEYS – NPS I – LO1413 and by IGA Czech Ministry of Health NT14327.
The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study.
The Editorial Board declares that the manuscript met the ICMJE “uniform requirements” for biomedical papers.
Submitted:
27. 3. 2015
Accepted:
28. 4. 2015
Zdroje
1. Farber S, Diamond K, Mercer R et al. Temporary remissions in acute leukemia in children produced by folic acid antagonist, 4- aminopteroyl- glutamic acid (aminopterin). N Engl J Med 1948; 238(23): 787– 793.
2. Huggins C, Stevens RE, Hodges CV. Studies on prostatic cancer. I. The effect of castration, of estrogen and of androgen injection on serum phosphatases in metastatic carcinoma of the prostate. Arch Surg 1941; 43(2): 209– 223.
3. Forkner CE, McNair S. Arsenic as a therapeutic agent in chronic myelogenous leukemia. Preliminary report. JAMA 1931; 95(1): 3– 5.
4. DeVita VT Jr., Chu E. A history of cancer chemotherapy. Cancer Res 2008; 68(21): 8643– 8653. doi: 10.1158/ 0008- 5472.CAN- 07- 6611.
5. Drugs.com [homepage on the Internet]. The American Society of Health- System Pharmacists, USA; c2004– 2014 [updated 2012 October 31; cited 2015 March 21]. Available from: www.drugs.com.
6. Spurlock CF 3rd, Aune ZT, Tossberg JT et al. Increased sensitivity to apoptosis induced by methotrexate is mediated by JNK. Arthritis Rheum 2011; 63(9): 2606– 2616. doi: 10.1002/ art.30457.
7. Floros KV, Talieri M, Scorilas A. Topotecan and methotrexate alter expression of the apoptosis-related genes BCL2, FAS and BCL2L12 in leukemic HL-60 cells. Biol Chem 2006; 387(12): 1629– 1633.
8. Haskó G, Linden J, Cronstein B et al. Adenosine receptors: therapeutic aspects for inflammatory and immune diseases. Nat Rev Drug Discov 2008; 7(9): 759– 770. doi: 10.1038/ nrd2638.
9. Nesher G, Osborn TG, Moore TL. In vitro effects of methotrexate on polyamine levels in lymphocytes from rheumatoid arthritis patients. Clin Exp Rheumatol 1996; 14(4): 395– 399.
10. Nesher G, Osborn TG, Moore TL. Effect of treatment with methotrexate, hydroxychloroquine, and prednisone on lymphocyte polyamine levels in rheumatoid arthritis: correlation with the clinical response and rheumatoid factor synthesis. Clin Exp Rheumatol 1997; 15(4): 343– 347.
11. Neradil J, Pavlasova G, Veselska R. New mechanisms for an old drug; DHFR- and non-DHFR- mediated effects of methotrexate in cancer cells. Klin Onkol 2012; 25 (Suppl 2):2S87– 2S92. doi: 10.14735/ amko20122S87.
12. Plant D, Wilson AG, Barton A. Genetic and epigenetic predictors of responsiveness to treatment in RA. Nat Rev Rheumatol 2014; 10(6): 329– 337. doi: 10.1038/ nrrheum.2014.16.
13. Widemann BC, Sung E, Anderson L et al. Pharmacokinetics and metabolism of the methotrexate metabolite 2, 4- diamino- N(10)- methylpteroic acid. J Pharmacol Exp Ther 2000; 294(3): 894– 901.
14. Valik D, Radina M, Sterba J et al. Homocysteine: exploring its potential as a pharmacodynamic biomarker of antifolate chemotherapy. Pharmacogenomics 2004; 5(8): 1151– 1162.
15. Widemann BC, Adamson PC. Understanding and managing methotrexate nephrotoxicity. Oncologist 2006; 11(6): 694– 703.
16. Řiháček M, Řiháček I, Zdražilová- Dubská L et al. Methotrexate update 2014: 70 years in autoimmunity and cancer treatment. Česk Pediatr 2014; 69(3): 161– 167.
17. Slaný J. Vysokodávkový methotrexát – nežádoucí účinky léčby. Klin Onkol 1993; 6(6): 163– 167.
18. Valík D, Zapletal O, Demlová R. Significant and unexpected toxicity in a child treated with high-dose therapy with methotrexate – past questions remaining unanswered. Klin Onkol 2002; 15(6): 230– 233.
19. Bourre-Tessier J, Haraoui B. Methotrexate drug interactions in the treatment of rheumatoid arthritis: a systematic review. J Rheumatol 2010; 37(7): 1416– 1421. doi: 10.3899/ jrheum.090153.
20. Pryde DC, Dalvie D, Hu Q et al. Aldehyde oxidase: an enzyme of emerging importance in drug discovery. J Med Chem 2010; 53(24): 8441– 8460. doi: 10.1021/ jm100888d.
21. Newton PA, Blakley RL. 7- Hydroxymethotrexate formation in a human lymphoblastic cell line. Biochem Biophys Res Commun 1984; 122(3): 1212– 1217.
22. Collier CP, MacLeod SM, Soldin SJ. Analysis of methotrexate and 7-hydroxymethotrexate by high-performance liquid chromatography and preliminary clinical studies. Ther Drug Monit 1982; 4(4): 371– 380.
23. Baggott JE, Morgan SL. Methotrexate catabolism to 7- hydroxymethotrexate in rheumatoid arthritis alters drug efficacy and retention and is reduced by folic acid supplementation. Arthritis Rheum 2009; 60(8): 2257– 2261. doi: 10.1002/ art.24685.
24. Chládek J, Martínková J, Sispera L. An in vitro study on methotrexate hydroxylation in rat and human liver. Physiol Res 1997; 46(5): 371– 379.
25. Fotoohi K, Jansen G, Assaraf YG et al. Disparate mechanisms of antifolate resistance provoked by methotrexate and its metabolite 7- hydroxymethotrexate in leukemia cells: implications for efficacy of methotrexate therapy. Blood 2004; 104(13): 4194– 4201.
26. Rhee MS, Galivan J. Conversion of methotrexate to 7- hydroxymethotrexate and 7- hydroxymethotrexate polyglutamates in cultured rat hepatic cells. Cancer Res 1986; 46(8): 3793– 3797.
27. McGuire JJ, Hsieh P, Bertino JR. Enzymatic synthesis of polyglutamate derivatives of 7- hydroxymethotrexate. Biochem Pharmacol 1984; 33(8): 1355– 1361.
28. Lankelma J, van der Klein E, Ramaekers F. The role of 7- hydroxymethotrexate during methotrexate anti-cancer therapy. Cancer Lett 1980; 9(2): 133– 142.
29. Fox RI, Morgan SL, Smith HT et al. Combined oral cyclosporin and methotrexate therapy in patients with rheumatoid arthritis elevates methotrexate levels and reduces 7- hydroxymethotrexate levels when compared with methotrexate alone. Rheumatology (Oxford) 2003; 42(8): 989– 994.
30. Erttmann R, Bielack S, Landbeck G. 7- Hydroxy- methotrexate and clinical toxicity following high-dose methotrexate therapy. J Cancer Res Clin Oncol 1985; 109(1): 86– 88.
31. Smeland E, Fuskevag OM, Nymann K et al. High-dose 7- hydromethotrexate: acute toxicity and lethality in a rat model. Cancer Chemother Pharmacol 1996; 37(5): 415– 422.
32. Holmboe L, Andersen AM, Morkrid L et al. High dose methotrexate chemotherapy: pharmacokinetics, folate and toxicity in osteosarcoma patients. Br J Clin Pharmacol 2012; 73(1): 106– 114. doi: 10.1111/ j.1365- 2125.2011.04054.x.
33. Smeland E, Bremnes RM, Andersen A et al. Renal and hepatic toxicity after high-dose 7- hydroxymethotrexate in the rat. Cancer Chemother Pharmacol 1994; 34(2): 119– 124.
34. Fuskevag OM, Kristiansen C, Lindal S et al. Maximum tolerated doses of methotrexate and 7- hydroxy- methotrexate in a model of acute toxicity in rats. Cancer Chemother Pharmacol 2000; 46(1): 69– 73.
35. Valik D, Sterba J, Bajciova V et al. Severe encephalopathy induced by the first but not the second course of high-dose methotrexate mirrored by plasma homocysteine elevations and preceded by extreme differences in pretreatment plasma folate. Oncology 2005; 69(3): 269– 272.
36. Demlova R, Radina M, Sterba J et al. Foláty: fyziologie, metabolismus a mechanismus rezistence na jejich antagonisty. Klin Onkol 2004; 17(6): 185– 189.
37. Widemann BC, Balis FM, Kempf- Bielack B et al. High-dose methotrexate-induced nephrotoxicity in patients with osteosarcoma. Cancer 2004; 100(10): 2222– 2232.
38. Nemlek.cz [internetová stránka]. Sekce nemocničních lékárníků, Česká Republika; c2015 [aktualizováno 8. srpna 2010; citováno 22. března 2015]. Dostupné z: www.nemlek.cz.
39. Buchen S, Ngampolo D, Melton RG et al. Carboxypeptidase G2 rescue in patients with methotrexate intoxication and renal failure. Br J Cancer 2005; 92(3): 480– 487.
40. Donehower RC, Hande KR, Drake JC et al. Presence of 2,4-diamino- N10- methylpteroic acid after high-dose methotrexate. Clin Pharmacol Ther 1979; 26(1): 63– 72.
41. Al- Turkmani MR, Law T, Narla A et al. Difficulty measuring methotrexate in a patient with high-dose methotrexate-induced nephrotoxicity. Clin Chem 2010; 56(12): 1792– 1794. doi: 10.1373/ clinchem.2010.144824.
42. Klapkova E, Kukacka J, Kotaska K et al. The influence of 7- OH methotrexate metabolite on clinical relevance of methotrexate determination. Clin Lab 2011; 57(7– 8): 599– 606.
43. Miller DS, Nobmann SN, Gutmann H et al. Xenobiotic transport across isolated brain microvessels studied by confocal microscopy. Mol Pharmacol 2000; 58(6): 1357– 1367.
44. Niemann A, Mühlisch J, Frühwald M C et al. Therapeutic drug monitoring of methotrexate in cerebrospinal fluid after systemic high-dose infusion in children: can the burden of intrathecal methotrexate be reduced? Therapeutic Drug Monitoring 2010; 32(4): 467– 475. doi: 10.1097/ FTD.0b013e3181e5c6b3.
45. Jonsson P, Hoglund P, Wiebe T et al. Methotrexate concentrations in cerebrospinal fluid and serum, and the risk of central nervous system relapse in children with acute lymphoblastic leukaemia. Anticancer Drugs 2007; 18(8): 941– 948.
46. Hudson MM, Link MP, Simone JV. Milestones in the curability of pediatric cancers. J Clin Oncol 2014; 32(23): 2391– 2397. doi: 10.1200/ JCO.2014.55.6571.
47. Bosson G. Reduced folate carrier: biochemistry and molecular biology of the normal and methotrexate-resistant cell. Br J Biomed Sci 2003; 60(2): 117– 129.
48. Deutsch JC, Elwood PC, Portillo RM et al. Role of the membrane-associated folate binding protein (folate receptor) in methotrexate transport by human KB cells. Arch Biochem Biophys 1989; 274(2): 327– 337.
49. Steinfeld R, Grapp M, Kraetzner R et al. Folate receptor alpha defect causes cerebral folate transport deficiency: a treatable neurodegenerative disorder associated with disturbed myelin metabolism. Am J Hum Genet 2009; 85(3): 354– 363. doi: 10.1016/ j.ajhg.2009.08.005.
50. Zhao R, Assaraf YG,Goldman ID. A reduced folate carrier mutation produces substrate- dependent alterations in carrier mobility in murine leukemia cells and methotrexate resistance with conservation of growth in 5-formyltetrahydrofolate. J Biol Chem 1998; 273(14): 7873– 7879.
51. Panetta JC, Wall A, Pui CH et al. Methotrexate intracellular disposition in acute lymphoblastic leukemia: a mathematical model of gamma- glutamyl hydrolase activity. Clin Cancer Res 2002; 8(7): 2423– 2429.
52. Chabner BA, Allegra CJ, Curt GA et al. Polyglutamation of methotrexate. Is methotrexate a prodrug? J Clin Invest 1985; 76(3): 907– 912.
53. Dervieux T, Furst D, Lein DO et al. Polyglutamation of methotrexate with common polymorphisms in reduced folate carrier, aminoimidazole carboxamide ribonucleotide transformylase, and thymidylate synthase are associated with methotrexate effects in rheumatoid arthritis. Arthritis Rheum 2004; 50(9): 2766– 2774.
54. Meesters RJ, den Boer E, de Jonge R et al. Assessment of intracellular methotrexate and methotrexate- polyglutamate metabolite concentrations in erythrocytes by ultrafast matrix- assisted laser desorption/ ionization triple quadrupole tandem mass spectrometry. Rapid Commun Mass Spectrom 2011; 25(20): 3063– 3070. doi: 10.1002/ rcm.5202.
55. Allegra CJ, Drake JC, Jolivet J et al. Inhibition of phosphoribosylaminoimidazolecarboxamide transformylase by methotrexate and dihydrofolic acid polyglutamates. Proc Natl Acad Sci USA 1985; 82(15): 4881– 4885.
56. Allegra CJ, Chabner BA, Drake JC et al. Enhanced inhibition of thymidylate synthase by methotrexate polyglutamates. J Biol Chem 1985; 260(17): 9720– 9726.
57. Jolivet J, Chabner BA. Intracellular pharmacokinetics of methotrexate polyglutamates in human breast cancer cells. Selective retention and less dissociable binding of 4- NH2- 10- CH3- pteroylglutamate4 and 4- NH2- 10- CH3- pteroylglutamate5 to dihydrofolate reductase. J Clin Invest 1983; 72(3): 773– 778.
58. Hroch M, Tukova J, Dolezalova P et al. An im-proved high-performance liquid chromatography method for quantification of methotrexate polyglutamates in red blood cells of children with juvenile idiopathic arthritis. Biopharm Drug Dispos 2009; 30(3): 138– 148.
59. van Haandel L, Becker ML, Williams TD et al. Measurement of methotrexate polyglutamates in human erythrocytes by ion- pair UPLC- MS/ MS. Bioanalysis 2011; 3(24): 2783– 2796.
60. Becker ML, van Haandel L, Gaedigk R et al. Analysis of intracellular methotrexate polyglutamates in patients with juvenile idiopathic arthritis: effect of route of administration on variability in intracellular methotrexate polyglutamate concentrations. Arthritis Rheum 2010; 62(6): 1803– 1812. doi: 10.1002/art.27434.
Štítky
Paediatric clinical oncology Surgery Clinical oncologyČlánok vyšiel v časopise
Clinical Oncology
2015 Číslo 3
- Spasmolytic Effect of Metamizole
- Metamizole at a Glance and in Practice – Effective Non-Opioid Analgesic for All Ages
- Metamizole in perioperative treatment in children under 14 years – results of a questionnaire survey from practice
- Current Insights into the Antispasmodic and Analgesic Effects of Metamizole on the Gastrointestinal Tract
- Obstacle Called Vasospasm: Which Solution Is Most Effective in Microsurgery and How to Pharmacologically Assist It?
Najčítanejšie v tomto čísle
- New Findings in Methotrexate Pharmacology – Diagnostic Possibilities and Impact on Clinical Care
- Podávání kontinuálních infuzí cytostatik pomocí elastomerických infuzorů
- Tumour Hypoxia – Molecular Mechanisms and Clinical Relevance
- Early Integration of Palliative Care into Standard Oncology Care – Benefits, Limitations, Barriers and Types of Palliative Care