Detection of EGFR Mutations in Circulating Tumor DNA (ctDNA) Retrieved from Plasma – Interlaboratory Quality Assessment in the Czech Republic
Authors:
Čapková Linda 1; Kalinová Markéta 1; Tichá Ivana 2; Parobková Eva 3; Matějčková Milada 3; Vošmiková Hana 4; Horký Ondřej 5; Bartáková Karolína 5; Drábek Jiří 6; Bajerová Monika 7; Dundr Pavel 2
Authors place of work:
Ústav patologie a molekulární medicíny, 2. LF UK a FN Motol, Praha
1; Ústav patologie, 1. LF UK a VFN v Praze
2; Oddělení patologie a molekulární medicíny, Thomayerova nemocnice, Praha
3; Fingerlandův ústav patologie, LF UK a FN Hradec Králové
4; Oddělení onkologické patologie, Masarykův onkologický ústav, Brno
5; Ústav molekulární a translační medicíny, LF UP v Olomouci
6; Centrum molekulární biologie a genové terapie, Interní hematologická a onkologická klinika LF MU a FN Brno
7
Published in the journal:
Klin Onkol 2018; 31(5): 353-360
Category:
Original Articles
doi:
https://doi.org/10.14735/amko2018353
Summary
Background:
Detection of EGFR mutations in tumor tissue represents a standard testing procedure in patients with non-small cell lung cancer. Molecular testing of circulating tumor DNA (ctDNA) in plasma enables detection of mutations in cases where tumor specimens are unavailable or when monitoring of therapeutic responses is necessary. In addition, according to the recent literature, ctDNA better reflects the heterogeneity of the neoplastic cell population than isolated tumor lesion or metastasis. We report a national interlaboratory evaluation aimed at assessing the analytical quality of ctDNA EGFR testing in plasma across seven reference laboratories in the Czech Republic.
Material and methods:
Aliquots of 13 plasma samples were sent to 7 laboratories and consisted of commercially available 2 ml plasma specimens of genomic DNA with mutant allelic frequencies of 5, 0.5, 0.05, and 0% of the most common sensitizing mutations (deletion in exon 19, L858R) and the resistance mutation T790M. DNA extraction and EGFR testing were performed according to standard procedures. In 6/7 laboratories the cobas® EGFR Mutation Test v2 was used. One laboratory employed the Super-ARMS® EGFR Mutation Detection Kit.
Results:
In total, 91 genotypes were determined with an overall error rate of 24.2% (22/91). The overall error rates were 3.2% (2/63) for the 0.5% mutation frequency and 0% for the 5% mutation frequency (0/35), respectively. No false positive results were reported. The cobas® method achieved consistent results with the 0.05% mutation frequency for the exon 19 deletion. For L858R and T790M mutations, the threshold was above the 0.5% frequency.
Conclusions:
The results show that EGFR testing for ctDNA in plasma has limited sensitivity, especially for detection of the T790M mutation. Particularly, in ctDNA testing of very low mutated DNA plasma fractions (below 0.01%), emphasis should be placed on the use of highly sensitive molecular methods. The outcomes of this quality assessment confirm the need for rebiopsy in patients with negative plasma results because of a higher false negative rate in comparison to tissue testing.
Key words:
circulating DNA – liquid biopsy – epidermal growth factor receptor – non-small cell lung cancer – quality control
This work was supported by grants of AstraZeneca and the project of the Ministry of Health number 00064203 (Motol University Hospital).
The authors declare they have no potential confl icts of interest concerning drugs, products, or services used in the study.
The Editorial Board declares that the manuscript met the ICMJE recommendation for biomedical papers.
Submitted: 4. 6. 2018
Accepted: 1. 8. 2018
Zdroje
1. Miller KD, Siegel RL, Lin CC et al. Cancer treatment and survivorship statistics, 2016. CA Cancer J Clin 2016; 66 (4): 271–289. doi: 10.3322/caac.21349.
2. Herbst RS, Heymach JV, Lippman SM. Lung cancer. N Engl J Med 2008; 359 (13): 1367–1380. doi: 10.1056/NEJMra0802714.
3. Rosell R, Moran T, Queralt C et al. Screening for epidermal growth factor receptor mutations in lung cancer. N Engl J Med 2009; 361 (10): 958–967. doi: 10.1056/NEJMoa0904554.
4. Fiala O, Pešek M, Fínek J et al. EGFR mutations in patients with advanced NSCLC. Klin Onkol 2012; 25 (4): 267–273. doi: 10.14735/amko2012267.
5. Reck M, Popat S, Reinmuth N et al. Metastatic non-small-cell lung cancer (NSCLC): ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol 2014; 25 (Suppl 3): iii27– iii 39. doi: 10.1093/annonc/mdu199.
6. Sharma SV, Bell DW, Settleman J et al. Epidermal growth factor receptor mutations in lung cancer. Nat Rev Cancer 2007; 7 (3): 169–181. doi: 10.1038/nrc2088.
7. Heneberg P. Indication of EGFR kinase inhibitors should be refined. Klin Onkol 2011; 24 (2): 87–93. doi: 10.14735/amko201187.
8. Kim ES, Hirsh V, Mok T et al. Gefitinib versus docetaxel in previously treated non-small-cell lung cancer (INTEREST): a randomised phase III trial. Lancet 2008; 372 (9652): 1809–1818. doi: 10.1016/S0140-6736 (08) 61758-4.
9. Inoue A, Sugawara S, Yamazaki K et al. Randomized phase II trial comparing amrubicin with topotecan in patients with previously treated small-cell lung cancer: north Japan lung cancer study group trial 0402. J Clin Oncol 2008; 26 (33): 5401–5406. doi: 10.1200/JCO.2008.18.1974.
10. Mok TS, Wu YL, Thongprasert S et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med 2009; 361 (10): 947–957. doi: 10.1056/NEJMoa0810699.
11. Rosell R, Carcereny E, Gervais R et al. Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol 2012; 13 (3): 239–246. doi: 10.1016/S1470-2045 (11) 70393-X.
12. Sequist LV, Yang JC, Yamamoto N et al. Phase III study of afatinib or cisplatin plus pemetrexed in patients with metastatic lung adenocarcinoma with EGFR mutations. J Clin Oncol 2013; 31 (27): 3327–3334. doi: 10.1200/JCO.2012.44.2806.
13. Sequist LV, Waltman BA, Dias-Santagata D et al. Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Sci Transl Med 2011; 3 (75): 75ra26. doi: 10.1126/scitranslmed.3002003.
14. Yu HA, Arcila ME, Rekhtman N et al. Analysis of tumor specimens at the time of acquired resistance to EGFR-TKI therapy in 155 patients with EGFR-mutant lung cancers. Clin Cancer Res 2013; 19 (8): 2240–2247. doi: 10.1158/1078-0432.CCR-12-2246.
15. Cross DA, Ashton SE, Ghiorghiu S et al. AZD9291, an irreversible EGFR TKI, overcomes T790M-mediated resistance to EGFR inhibitors in lung cancer. Cancer Discov 2014; 4 (9): 1046–1061. doi: 10.1158/2159-8290.CD-14-0337.
16. Mok TS, Wu YL, Ahn MJ et al. Osimertinib or platinum-pemetrexed in EGFR T790M-positive lung cancer. N Engl J Med 2017; 376 (7): 629–640. doi: 10.1056/NEJMoa1612674.
17. Yoon HJ, Lee HY, Lee KS et al. Repeat biopsy for mutational analysis of non-small cell lung cancers resistant to previous chemotherapy: adequacy and complications. Radiology 2012; 265 (3): 939–948. doi: 10.1148/radiol.12112613.
18. Yang JC, Wu YL, Chan V et al. Epidermal growth factor receptor mutation analysis in previously unanalyzed histology samples and cytology samples from the phase III Iressa Pan-ASia Study (IPASS). Lung Cancer 2014; 83 (2): 174–181. doi: 10.1016/j.lungcan.2013.11.021.
19. Pirker R, Pereira JR, von Pawel J et al. EGFR expression as a predictor of survival for first-line chemotherapy plus cetuximab in patients with advanced non-small-cell lung cancer: analysis of data from the phase 3 FLEX study. Lancet Oncol 2012; 13 (1): 33–42. doi: 10.1016/S1470-2045 (11) 70318-7.
20. de Bruin EC, McGranahan N, Mitter R et al. Spatial and temporal diversity in genomic instability processes defines lung cancer evolution. Science 2014; 346 (6206): 251–256. doi: 10.1126/science.1253462.
21. Fisher R, Pusztai L, Swanton C. Cancer heterogeneity: implications for targeted therapeutics. Br J Cancer 2013; 108 (3): 479–485. doi: 10.1038/bjc.2012.581.
22. Yung TK, Chan KC, Mok TS et al. Single-molecule detection of epidermal growth factor receptor mutations in plasma by microfluidics digital PCR in non-small cell lung cancer patients. Clin Cancer Res 2009; 15 (6): 2076–2084. doi: 10.1158/1078-0432.CCR-08-2622.
23. Brevet M, Johnson ML, Azzoli CG et al. Detection of EGFR mutations in plasma DNA from lung cancer patients by mass spectrometry genotyping is predictive of tumor EGFR status and response to EGFR inhibitors. Lung Cancer 2011; 73 (1): 96–102. doi: 10.1016/j.lungcan.2010.10.014.
24. Jahr S, Hentze H, Englisch S et al. DNA fragments in the blood plasma of cancer patients: quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer Res 2001; 61 (4): 1659–1665.
25. Thierry AR, El Messaoudi S, Gahan PB et al. Origins, structures, and functions of circulating DNA in oncology. Cancer Metastasis Rev 2016; 35 (3): 347–376. doi: 10.1007/s10555-016-9629-x.
26. Chan KC. Scanning for cancer genomic changes in plasma: toward an era of personalized blood-based tumor markers. Clin Chem 2013; 59 (11): 1553–1555. doi: 10.1373/clinchem.2013.207381.
27. Murtaza M, Dawson SJ, Tsui DW et al. Non-invasive analysis of acquired resistance to cancer therapy by sequencing of plasma DNA. Nature 2013; 497 (7447): 108–112. doi: 10.1038/nature12065.
28. Nakamura T, Sueoka-Aragane N, Iwanaga K et al. A noninvasive system for monitoring resistance to epidermal growth factor receptor tyrosine kinase inhibitors with plasma DNA. J Thorac Oncol 2011; 6 (10): 1639–1648. doi: 10.1097/JTO.0b013e31822956e8.
29. Thress KS, Brant R, Carr TH et al. EGFR mutation detection in ctDNA from NSCLC patient plasma: A cross-platform comparison of leading technologies to support the clinical development of AZD9291. Lung Cancer 2015; 90 (3): 509–515. doi: 10.1016/j.lungcan.2015.10.004.
30. Sakai K, Horiike A, Irwin DL et al. Detection of epidermal growth factor receptor T790M mutation in plasma DNA from patients refractory to epidermal growth factor receptor tyrosine kinase inhibitor. Cancer Sci 2013; 104 (9): 1198–1204. doi: 10.1111/cas.12211.
31. Oxnard GR, Paweletz CP, Kuang Y et al. Noninvasive detection of response and resistance in EGFR-mutant lung cancer using quantitative next-generation genotyping of cell-free plasma DNA. Clin Cancer Res 2014; 20 (6): 1698–1705. doi: 10.1158/1078-0432.CCR-13-2482.
32. Douillard JY, Ostoros G, Cobo M et al. Gefitinib treatment in EGFR mutated caucasian NSCLC: circulating-free tumor DNA as a surrogate for determination of EGFR status. J Thorac Oncol 2014; 9 (9): 1345–1353. doi: 10.1097/JTO.0000000000000263.
33. Reck M, Hagiwara K, Han B et al. ctDNA determination of EGFR mutation status in European and Japanese patients with advanced NSCLC: the ASSESS study. J Thorac Oncol 2016; 11 (10): 1682–1689. doi: 10.1016/j.jtho.2016.05.036.
34. Lindeman NI, Cagle PT, Aisner DL et al. Updated molecular testing guideline for the selection of lung cancer patients for treatment with targeted tyrosine kinase inhibitors: guideline from the College of American Pathologists, the International Association for the Study of Lung Cancer, and the Association for Molecular Pathology. J Mol Diagn 2018; 20 (2): 129–159. doi: 10.1016/j.jmoldx.2017.11.004.
35. Diehl F, Schmidt K, Choti MA et al. Circulating mutant DNA to assess tumor dynamics. Nat Med 2008; 14 (9): 985–990. doi: 10.1038/nm.1789.
36. Kukita Y, Uchida J, Oba S et al. Quantitative identification of mutant alleles derived from lung cancer in plasma cell-free DNA via anomaly detection using deep sequencing data. PLoS One 2013; 8 (11): e81468. doi: 10.1371/journal.pone.0081468.
37. Sacher AG, Komatsubara KM, Oxnard GR. Application of plasma genotyping technologies in non-small cell lung cancer: a practical review. J Thorac Oncol 2017; 12 (9): 1344–1356. doi: 10.1016/j.jtho.2017.05.022.
38. Suzawa K, Yamamoto H, Ohashi K et al. Optimal method for quantitative detection of plasma EGFR T790M mutation using droplet digital PCR system. Oncol Rep 2017; 37 (5): 3100–3106. doi: 10.3892/or.2017. 5567.
39. Bartels S, Persing S, Hasemeier B et al. Molecular analysis of circulating cell-free DNA from lung cancer patients in routine laboratory practice: a cross-platform comparison of three different molecular methods for mutation detection. J Mol Diagn 2017; 19 (5): 722–732. doi: 10.1016/j.jmoldx.2017.05.008.
40. Kasahara N, Kenmotsu H, Serizawa M et al. Plasma epidermal growth factor receptor mutation testing with a chip-based digital PCR system in patients with advanced non-small cell lung cancer. Lung Cancer 2017; 106: 138–144. doi: 10.1016/j.lungcan.2017.02.001.
41. Reckamp KL, Melnikova VO, Karlovich C et al. A highly sensitive and quantitative test platform for detection of NSCLC EGFR mutations in urine and plasma. J Thorac Oncol 2016; 11 (10): 1690–1700. doi: 10.1016/j.jtho.2016.05.035.
42. Yoshida H, Kim YH, Ozasa H et al. EGFR T790M detection in circulating tumor DNA from non-small cell lung cancer patients using the PNA-LNA clamp method. Anticancer Res 2017; 37 (5): 2721–2725. doi: 10.21873/anticanres.11623.
43. Jenkins S, Yang JC, Ramalingam SS et al. Plasma ctDNA analysis for detection of the EGFR T790M mutation in patients with advanced non-small cell lung cancer. J Thorac Oncol 2017; 12 (7): 1061–1070. doi: 10.1016/j.jtho.2017.04.003.
44. Summary of safety and effectiveness data (SSED). FDA: U.S. Food and Drug Administration. [online]. Available from: https: //www.accessdata.fda.gov/cdrh_docs/pdf15/p150044b.pdf.
45. QIAGEN announces first-ever regulatory registration of a lung cancer companion diagnostic based on liquid biopsies. PR Newswire. [online]. Available from: https: //www.prnewswire.com/news-releases/qiagen-announces-first-ever-regulatory-registration-of-a-lung-cancer-companion-diagnostic-based-on-liquid-biopsies-288226911.html.
46. Mok T, Wu YL, Lee JS et al. Detection and dynamic changes of EGFR mutations from circulating tumor DNA as a predictor of survival outcomes in NSCLC patients treated with first-line intercalated erlotinib and chemothera-py. Clin Cancer Res 2015; 21 (14): 3196–3203. doi: 10.1158/1078-0432.CCR-14-2594.
47. List of cleared or approved companion diagnostic devices (in vitro and imaging tools). FDA: U.S. Food and Drug Administration. [online]. Available from: https: //www.fda.gov/medicaldevices/productsandmedicalprocedures/invitrodiagnostics/ucm301431.htm.
48. McCoach CE, Jimeno A. Osimertinib, a third-generation tyrosine kinase inhibitor targeting non-small cell lung cancer with EGFR T790M mutations. Drugs Today (Barc) 2016; 52 (10): 561–568. doi: 10.1358/dot. 2016.52.10. 2541343.
49. Weber B, Meldgaard P, Hager H et al. Detection of EGFR mutations in plasma and biopsies from non-small cell lung cancer patients by allele-specific PCR assays. BMC Cancer 2014; 14: 294. doi: 10.1186/1471-2407-14-294.
50. Karlovich C, Goldman JW, Sun JM et al. Assessment of EGFR mutation status in matched plasma and tumor tissue of NSCLC patients from a phase i study of rociletinib (CO-1686). Clin Cancer Res 2016; 22 (10): 2386–2395. doi: 10.1158/1078-0432.CCR-15-1260.
51. Deans ZC, Williams H, Dequeker EMC et al. Review of the implementation of plasma ctDNA testing on behalf of IQN Path ASBL: a perspective from an EQA providers‘ survey. Virchows Arch 2017; 471 (6): 809–813. doi: 10.1007/s00428-017-2222-z.
52. AIOM.it. Associazione Italiana di oncologia medica. [online]. Available from: www.aiom.it/aiom-servizi/eventi_aiom_servizi/6th_meeting_on-external-quality-assessment-in-molecular-pathology/1,4046,1.
53. Molecular testing of cfDNA in plasma for EGFR gene mutations (pilot). European Molecular Quality Network. [online]. Available from: https: //www.emqn.org/schemes/molecular-testing-EGFR-gene-mutations-ctdna-pilot/.
54. Cobas® EGFR mutation test v2. FDA: U.S. Food and Drug Administration. [online]. Available from: www.accessdata.fda.gov/cdrh_docs/pdf12/P120019s007c.pdf.
55. Oxnard GR, Thress KS, Alden RS et al. Association between plasma genotyping and outcomes of treatment with osimertinib (AZD9291) in advanced non-small-cell lung cancer. J Clin Oncol 2016; 34 (28): 3375–3382. doi: 10.1200/JCO.2016.66.7162.
56. Heitzer E, Ulz P, Geigl JB. Circulating tumor DNA as a liquid biopsy for cancer. Clin Chem 2015; 61 (1): 112–123. doi: 10.1373/clinchem.2014.222679.
57. Catalogue of somatic mutations in cancer. [online]. Available from: http: //cancer.sanger.ac.uk/cancergenome/projects/cosmic/.
Štítky
Paediatric clinical oncology Surgery Clinical oncologyČlánok vyšiel v časopise
Clinical Oncology
2018 Číslo 5
- Spasmolytic Effect of Metamizole
- Metamizole at a Glance and in Practice – Effective Non-Opioid Analgesic for All Ages
- Metamizole in perioperative treatment in children under 14 years – results of a questionnaire survey from practice
- Current Insights into the Antispasmodic and Analgesic Effects of Metamizole on the Gastrointestinal Tract
- Obstacle Called Vasospasm: Which Solution Is Most Effective in Microsurgery and How to Pharmacologically Assist It?
Najčítanejšie v tomto čísle
- Solid Pseudopapillary Tumor of the Pancreas – Rare Neoplastic Disease in 20-Year-Old Woman
- The Significance of BRAFV600E Mutation in Thyroid Cancer in Terms of Novel Targeted Therapies – Overview of Current Knowledge and Studies
- Psychoneuroimmunology of Cancer – Recent Findings and Perspectives
- Pregnancy and Ovarian Stimulation in the Patients with Breast Cancer