Role of exosomes in malignancies
Authors:
M. Vodičková; J. Gregorová; M. Ždárská; M. Vlachová; S. Ševčíková
Authors place of work:
Babákova myelomová skupina, Ústav patologické fyziologie, LF MU, Brno
Published in the journal:
Klin Onkol 2020; 33(4): 274-279
Category:
Review
doi:
https://doi.org/10.14735/amko2020274
Summary
Background: Extracellular vesicles are closed structured surrounded by a lipid membrane that are secreted by almost all types of cells; their function is information delivery during cell-to-cell communication. They are most commonly divided into three categories – exosomes, microvesicles and apoptotic bodies. Exosomes are small vesicles with the size of 30–100 nm, and they are found in almost all body fluids, including peripheral blood, urine, breast milk, saliva and others. They are able to deliver their content to target cells and change their behavior. Cancer cells are able to secrete more exosomes and also contain different proteins and RNA species than the exosomes from healthy cells. Due to their specific composition that is connected to the cell of origin, exosomes could be used as biomarkers of various diseases in the future.
Purpose: The aim of this work is to summarize current knowledge about exosomes and their role in various processes connected to resistance in tumors.
This work was supported by grant of the Ministry of Health of the Czech Republic AZV 17-29343A.
The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study.
The Editorial Board declares that the manuscript met the ICMJE recommendation for biomedical papers.
Keywords:
exozomy – nádory – extracelulární vezikuly – léková rezistence
Zdroje
1. Chiriacò MS, Bianco M, Nigro A et al. Lab-on-chip for exosomes and microvesicles detection and characterization. Sensors 2018, 18 (10): 3175. doi: 10.3390/s18103175.
2. Osteikoetxea X, Sódar B, Németh A et al. Differential detergent sensitivity of extracellular vesicle subpopulations. Org Biomol Chem 2015; 13 (38): 9775–9782. doi: 10.1039/C5OB01451D.
3. Kowal J, Arras G, Colombo M et al. Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc Natl Acad Sci USA 2016; 113 (8): E968–E977. doi: 0.1073/pnas.1521230113.
4. Chenjie Y, Robbins PD. The roles of tumor-derived exosomes in cancer pathogenesis. [online]. Available from: https: //www.hindawi.com/journals/jir/2011/842849/.
5. Waldenström A, Gennebäck N, Hellman U et al. Cardiomyocyte microvesicles contain DNA/RNA and convey biological messages to target cells. [online]. Available from: https: //journals.plos.org/plosone/article?id=10.1371/journal.pone.0034653.
6. Zhang Y, Liu Y, Liu H et al. Exosomes: biogenesis, biologic function and clinical potential. Cell Biosci 2019; 9 (1): 19. doi: 0.1186/s13578-019-0282-2.
7. Brinton LT, Sloane HS, Kester M et al. Formation and role of exosomes in cancer. Cel Mol Life Sci 2015; 72 (4): 659–671. doi: 10.1007/s00018-014-1764-3.
8. Kahlert C, Melo SA, Protopopov A et al. Identification of double-stranded genomic DNA spanning all chromosomes with mutated KRAS and p53 DNA in the serum exosomes of patients with pancreatic cancer. J Biol Chem 2014; 289 (7): 3869–3875. doi: 0.1074/jbc.C113.532267.
9. Minciacchi VR, Freeman MR, di Vizio D. Extracellular vesicles in cancer: exosomes, microvesicles and the emerging role of large oncosomes. Semin Cell Dev Biol 2015; 40: 41–51. doi: 0.1016/j.semcdb.2015.02.010.
10. Hessvik NP, LLorente A. Current knowledge on exosome biogenesis and release. Cel Mol Life Sci 2018; 75 (2): 193–208. doi: 0.1007/s00018-017-2595-9.
11. Jella KK, Tahseen HN, Li Z et al. Exosomes, their biogenesis and role in inter-cellular communication, tumor microenvironment and cancer immunotherapy. Vaccines 2018; 6 (4): 69. doi: 0.3390/vaccines6040069.
12. Henne WM, Buchkovich NJ, Emr SD. The ESCRT Pathway. Developmental Cell 2011, 21 (1), 77–91. doi: 0.1016/j.devcel.2011.05.015.
13. KatzmanN DJ, Odorizzi G, Emr SD. Receptor downregulation and multivesicular-body sorting. Nat Rev Mol Cell Biol 2002; 3 (12): 893–905. doi: 0.1038/nrm973.
14. Katzmann DJ, Stefan CJ, Babst M et al. Vps27 recruits ESCRT machinery to endosomes during MVB sorting. J Cell Biol 2003; 162 (3): 413–423. doi: 0.1083/jcb.200302136.
15. Gross JC, Chaudhary V, Bartscherer K et al. Active Wnt proteins are secreted on exosomes. Nat Cell Biol 2012; 14 (10): 1036–1045. doi: 0.1038/ncb2574.
16. Hoshino D, Kirkbride KC, Costello K et al. Exosome secretion is enhanced by invadopodia and drives invasive behavior. Cell Rep 2013; 5 (5): 1159–1168. doi: 0.1016/j.celrep.2013.10.050.
17. Tamai K, Tanaka N, Nakano T et al. Exosome secretion of dendritic cells is regulated by Hrs, an ESCRT-0 protein. Biochemical and Biophysical Research Communications 2010; 399 (3): 384–390. doi: 0.1016/j.bbrc.2010.07.
083.
18. Barile L,Vassalli G. Exosomes: Therapy delivery tools and biomarkers of diseases. Pharmacol Therap 2017; 174: 63–78. doi: 0.1016/j.pharmthera.2017.02.020.
19. Stuffers S, Wegner CS, Stenmark H et al. Multivesicular endosome biogenesis in the absence of ESCRTs. Traffic 2009; 10 (7): 925–937. doi: 0.1111/j.1600-0854.2009.00920.x.
20. Van Niel G, Charrin S, Simoes S et al. The tetraspanin CD63 regulates ESCRT-independent and -dependent endosomal sorting during melanogenesis. Develop Cell 2011; 21 (4): 708–721. doi: 0.1016/j.devcel.2011.08.019.
21. Trajkovic K, Hsu C, Chiantia S et al. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 2008; 319 (5867): 1244–1247. doi: 0.1126/science.1153124.
22. Kowal J, Tkach M, Théry C. Biogenesis and secretion of exosomes. Curr Opin Cell Biol 2014; 29: 116–125. doi: 0.1016/j.ceb.2014.05.004.
23. Blanc L, Vidal M. New insights into the function of Rab GTPases in the context of exosomal secretion. Small GTPases 2018; 9 (1–2): 95–106. doi: 0.1080/21541248.2016.1264352.
24. Raposo G, Stoorvogel W. Extracellular vesicles: Exosomes, microvesicles, and friends. Journal of Cell Biology 2013; 200 (4): 373–383. doi: 0.1083/jcb.201211138.
25. Ostrowski M, Carmo NB, Krumeich S et al. Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat Cell Biol 2010; 12 (1): 19–30. doi: 0.1038/ncb2000.
26. Fitzner D, Schnaars M, van Rossum D et al. Selective transfer of exosomes from oligodendrocytes to microglia by macropinocytosis. J Cell Sci 2011; 124 (3): 447–458. doi: 0.1242/jcs.074088.
27. Parolini I, Federici C, Raggi C et al. Microenvironmental pH is a key factor for exosome traffic in tumor cells. J Biol Chem 2009, 284 (49), 34211–34222. doi: 0.1074/jbc.M109.041152.
28. Gonda A, Kabagwira J, Senthil GN et al. Internalization of exosomes through receptor-mediated endocytosis. [online]. Available from: https: //mcr.aacrjournals.org/content/molcanres/17/2/337.full.pdf.
29. Tian T, Zhu ZL, Yue-Yuan Z et al. Exosome uptake through clathrin-mediated endocytosis and macropinocytosis and mediating miR-21 delivery. J Biol Chem 2014; 289 (32): 22258–22267. doi: 0.1074/jbc.M114.588046.
30. Feng D, Zhao WL, Ye YY et al. Cellular internalization of exosomes occurs through phagocytosis. Traffic 2010; 11 (5): 675–687. doi: 0.1111/j.1600-0854.2010.01041.x.
31. Lu J, Li J, Liu S et al. Exosomal tetraspanins mediate cancer metastasis by altering host microenvironment. Oncotarget 2017; 8 (37): 62803–62815. doi: 0.18632/oncotarget.19119.
32. Rana S, Yue S, Stadel D et al. Toward tailored exosomes: The exosomal tetraspanin web contributes to target cell selection. International J Biochem Cell Biol 2012; 44 (9): 1574–1584. doi: 0.1016/j.biocel.2012.06.018.
33. Shevtsov M, Multhoff G. Heat shock protein–peptide and HSP-based immunotherapies for the treatment of cancer. Front Immunol 2016; 7: 171. doi: 0.3389/fimmu.2016.00171.
34. Murshid A, Gong J, Calderwood SK. The role of heat shock proteins in antigen cross presentation. Front Immunol 2012; 3: 63. doi: 0.3389/fimmu.2012.00063.
35. Le NQK, Ho QT, Ou YY. Classifying the molecular functions of Rab GTPases in membrane trafficking using deep convolutional neural networks. Anal Biochem 2018; 555: 33–41. doi: 0.1016/j.ab.2018.06.011.
36. Subra C, Grand D, Laulagnier K et al. Exosomes account for vesicle-mediated transcellular transport of activatable phospholipases and prostaglandins. J Lipid Res 2010; 51 (8): 2105–2120. doi: 0.1194/jlr.M003657.
37. Durcin M, Fleury A, Taillebois E et al. Characterisation of adipocyte-derived extracellular vesicle subtypes identifies distinct protein and lipid signatures for large and small extracellular vesicles. [online]. Available from: https: //www.tandfonline.com/doi/full/10.1080/20013078.2017.1305677.
38. Chapuy-Regaud S, Dubois M, Plisson-Chastang C et al. Characterization of the lipid envelope of exosome encapsulated HEV particles protected from the immune response. Biochimie 2017; 141: 70–79. doi: 0.1016/j.biochi.2017.05.003.
39. Llorente A, Skotland T, Sylvänne S et al. Molecular lipidomics of exosomes released by PC-3 prostate cancer cells. Biochimica et Biophysica Acta 2013; 1831 (7): 1302–1309. doi: 0.1016/j.bbalip.2013.04.011.
40. Llorente A, van Deurs B, Sandvig K. Cholesterol regulates prostasome release from secretory lysosomes in PC-3 human prostate cancer cells. Eur J Cell Biol 2007; 86 (7): 405–415.doi: 0.1016/j.ejcb.2007.05.001.
41. Valadi Hadi, Ekström K, Bossios A et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 2007; 9 (6): 654–659. doi: 0.1038/ncb1596.
42. Villarroya-Beltri C, Gutiérrez-Vázque C, Sánchez-Cabo F et al. Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs. Nat Commun 2013; 4 (1): 1–10. doi: 0.1038/ncomms3980.
43. Holohan C, van Schaeybroeck S, Longley DB et al. Cancer drug resistance: an Evolving paradigm. Nat Rev Cancer 2013; 13 (10): 714–726. doi: 0.1038/nrc3599.
44. Ullah MF. Cancer multidrug resistance (MDR): a major impediment to effective chemotherapy. Asian Pac J Cancer Prev 2008; 9 (1): 1–6.
45. Leonard GD, Fojo T, Bates SE. The role of ABC transporters in clinical practice. Oncologist 2003; 8 (5): 411–424. doi: 0.1634/theoncologist.8-5-411.
46. Nanayakkara AK, Follit CA, Chen G et al. Targeted inhibitors of P-glycoprotein increase chemotherapeutic-induced mortality of multidrug resistant tumor cells. Sci Rep 2018; 8 (1): 1–18. doi: 0.1038/s41598-018-19325-x.
47. Bebawy M, Combes V, Lee E et al. Membrane microparticles mediate transfer of P-glycoprotein to drug sensitive cancer cells. Leukemia 2009; 23 (9): 1643–1649. doi: 0.1038/leu.2009.76.
48. Levchenko A, Mehta BM, Niu X et al. Intercellular transfer of P-glycoprotein mediates acquired multidrug resistance in tumor cells. Proc Natl Acad Sci USA 2005; 102 (6): 1933–1938. doi: 0.1073/pnas.0401851102.
49. Corcoran C, Rani S, O’brien K et al. Docetaxel-Resistance in Prostate Cancer: Evaluating Associated Phenotypic Changes and potential for resistance transfer via exosomes. PLoS ONE 2012; 7 (12): doi: 0.1371/journal.pone.0050999.
50. Lv M, Zhu X, Chen W et al. Exosomes mediate drug resistance transfer in MCF-7 breast cancer cells and a probable mechanism is delivery of P-glycoprotein. Tumor Biol 2014; 35 (11): 10773–10779. doi: 0.1007/s13277-014-2377-z.
51. Santos JC, Lima NS, Sarian LO et al. Exosome-mediated breast cancer chemoresistance via miR-155 transfer. Sci Rep 2018; 8 (1): 1–11. doi: 0.1038/s41598-018-19339-5.
52. Lee G, Hall RR, Ahmed AU. Cancer stem cells: cellular plasticity, niche, and its clinical relevance. J Stem Cell Res Ther 2016; 6 (10): doi: 0.4172/2157-7633.1000
363.
53. Crow J, Atay S, Banskota S et al. Exosomes as mediators of platinum resistance in ovarian cancer. Oncotarget 2017; 8 (7): 11917–11936. doi: 0.18632/oncotarget.
14440.
54. Wang M, Qiu R, Yu S et al. Paclitaxel‑resistant gastric cancer MGC‑803 cells promote epithelial‑to‑mesenchymal transition and chemoresistance in paclitaxel‑sensitive cells via exosomal delivery of miR‑155‑5p. Int J Oncol 2019; 54 (1): 326–338. doi: 0.3892/ijo.2018.4601.
55. Vergani E, di Guardo L, Dugo M et al. Overcoming melanoma resistance to vemurafenib by targeting CCL2-induced miR-34a, miR-100 and miR-125b. Oncotarget 2015; 7 (4): 4428–4441. doi: 0.18632/oncotarget.6599.
56. Dong H, Wang W, Chen R et al. Exosome-mediated transfer of lncRNA‑SNHG14 promotes trastuzumab chemoresistance in breast cancer. Int J Oncol 2018; 53 (3): 1013–1026. doi: 0.3892/ijo.2018.4467.
57. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000; 100 (1): 57–70. doi: 0.1016/S0092-8674 (00) 81683-9.
58. Hanahan D, Weinberg RA. Hallmarks of Ccancer: The next generation. Cell 2011; 144 (5): 646–674. doi: 0.1016/j.cell.2011.02.013.
59. Fouad YA, Aanei C. Revisiting the hallmarks of cancer. Am J Cancer Res 2017; 7 (5): 1016–1036.
60. Riches A, Campbell E, Borger E et al. Regulation of exosome release from mammary epithelial and breast cancer cells – a new regulatory pathway. Eur J Cancer 2014; 50 (5): 1025–1034. doi: 0.1016/j.ejca.2013.12.019.
61. Rackov G, Garcia-Romero N, Esteban-Rubio S et al. Vesicle-mediated control of cell function: The role of extracellular matrix and microenvironment. Front Physiol 2018; 9: 651. doi: 0.3389/fphys.2018.00
651.
62. Chen Z, Yang L, Cui Y et al. Cytoskeleton-centric protein transportation by exosomes transforms tumor-favorable macrophages. Oncotarget 2016; 7 (41): 67387–67402. doi: 0.18632/oncotarget.11794.
63. Steidl C, Lee T, Shah SP et al. Tumor-associated macrophages and survival in classic Hodgkin’s lymphoma. New Engl J Med 2010; 362 (10): 875–885. doi: 0.1056/NEJMoa0905680
64. Kalluri R, Lebleu VS. The biology, function, and biomedical applications of exosomes. [online]. Available from: https: //science.sciencemag.org/content/367/6478/eaau6977.
65. Raposo G, Nijman HW, Stoorvogel W et al. B lymphocytes secrete antigen-presenting vesicles. J Exp Med 1996; 183 (3): 1161–1172. doi: 0.1084/jem.183.3.1161.
66. Guo BB, Bellingham SA, Hill AF. Stimulating the release of exosomes increases the intercellular transfer of prions. J Biol Chem 2016; 291 (10): 5128–5137. doi: 0.1074/jbc.M115.684258.
67. Ristorcelli E, Beraud E, Verrando P et al. Human tumor nanoparticles induce apoptosis of pancreatic cancer cells. FASEB J 2008; 22 (9): 3358–3369. doi: 0.1096/fj.07-102855.
68. Zhang Y, Luo CL, He BC et al. Exosomes derived from IL-12-anchored renal cancer cells increase induction of specific antitumor response in vitro: A novel vaccine for renal cell carcinoma. Int J Oncol 2010; 36 (1): 133–140. doi: 0.3892/ijo_00000484.
Štítky
Paediatric clinical oncology Surgery Clinical oncologyČlánok vyšiel v časopise
Clinical Oncology
2020 Číslo 4
- Spasmolytic Effect of Metamizole
- Metamizole at a Glance and in Practice – Effective Non-Opioid Analgesic for All Ages
- Metamizole in perioperative treatment in children under 14 years – results of a questionnaire survey from practice
- Current Insights into the Antispasmodic and Analgesic Effects of Metamizole on the Gastrointestinal Tract
- Obstacle Called Vasospasm: Which Solution Is Most Effective in Microsurgery and How to Pharmacologically Assist It?
Najčítanejšie v tomto čísle
- Cervical cancer in pregnancy
- Integrated diagnostics of diffuse gliomas
- Atypical course of typical lung carcinoid
- Gamma-heavy chain disease