Erdheim-Chester disease
Authors:
M. Brychtová 1; M. Vlachová 1; J. Gregorová 1; M. Krejčí 2; Z. Adam 2; S. Ševčíková 1
Authors place of work:
Babákova myelomová skupina, Ústav patologické fyziologie, LF MU Brno
1; Interní hematologická a onkologická klinika LF MU a FN Brno
2
Published in the journal:
Klin Onkol 2021; 34(6): 434-439
Category:
Review
doi:
https://doi.org/10.48095/ccko2021434
Summary
Erdheim-Chester disease is a rare inflammatory myeloid clonal disease which is classified into histiocytoses. It is characterized by excessive production and accumulation of foamy histiocytes and Touton giant cells in various tissues and organs. Foamy histiocytes and Touton giant cells produce proinflammatory cytokines and chemokines and contain somatic mutations in genes activating the MAPK/ERK signaling pathway, but also in genes activating the PI3K/AKT signaling pathway. BRAFV600E is the most common somatic mutation. Furthermore, somatic mutations in the MAP2K1, KRAS, NRAS, ARAF or PIK3CA genes are abundant. Erdheim-Chester disease is a multisystemic disease in which any organ can be affected, especially the long bones of the lower extremities, but also the cardiovascular system, retroperitoneum, endocrine system, central nervous system, lungs, skin or orbit. The diagnosis is difficult because of the various manifestations of this disease. The disease occurs mainly in adults and is more common in men than in women. Targeted treatment by kinase inhibitors, interferon a, cytokine blockers or cladribine is used for the treatment.
Keywords:
incidence – Prognosis – Erdheim-Chester disease – survival – histiocytosis
Zdroje
1. Chester W. Über Lipoidgranulomatose. Virchows Arch Pathol Anat 1930; 279: 561–602.
2. Jaffe HL. Metabolic, degenerative and inflammatory disease of bones and joints. Philadelphia: Lea and Febiger 1972.
3. Emile JF, Abla O, Fraitag S et al. Revised classification of histiocytoses and neoplasms of the macrophage-dendritic cell lineages. Blood 2016; 127 (22): 2672–2681. doi: 10.1182/blood-2016-01-690636.
4. Swerdlow SH, Campo E, Harris NL et al. WHO classification of the tumours of haematopoietic and lymphoid tissues. Lyon: International Agency for Research on Cancer 2017.
5. Weissman R, Diamond EL, Haroche J et al. The contribution of microRNAs to the inflammatory and neoplastic characteristics of Erdheim-Chester disease. Cancers (Basel) 2020; 12 (11): 3240. doi: 10.3390/cancers12113240.
6. Král Z, Krejčí M, Ježová M et al. Příznaky a projevy Erdheimovy-Chesterovy choroby. Transfuze Hematol Dnes 2020; 26 (3): 167–176.
7. Goyal G, Heaney M, Collin M et al. Erdheim-Chester disease: consensus recommendations for evaluation, diagnosis, and treatment in the molecular era. Blood 2020; 135 (22): 1929–1945. doi: 10.1182/blood.2019003 507.
8. Arnaud L, Hervier B, Néel A et al. CNS involvement and treatment with interferon-a are independent prognostic factors in Erdheim-Chester disease: a multicenter survival analysis of 53 patients. Blood 2011; 117 (10): 2778–2782. doi: 10.1182/blood-2010-06-294108.
9. Haroche J, Cohen-Aubart F, Amoura Z. Erdheim--Chester disease. Blood 2020; 135 (16): 1311–1318. doi: 10.1182/blood.2019002766.
10. Estrada-Veras JI, O’Brien KJ, Boyd LC et al. The clinical spectrum of Erdheim-Chester disease: an observational cohort study. Blood Adv 2017; 1 (6): 357–366. doi: 10.1182/bloodadvances.2016001784.
11. Cohen-Aubart F, Emile JF, Carrat F et al. Phenotypes and survival in Erdheim-Chester disease: results from a 165-patient cohort. Am J Hematol 2018; 93 (5): E114–E117. doi: 10.1002/ajh.25055.
12. Pegoraro F, Papo M, Maniscalco V et al. Erdheim-Chester disease: a rapidly evolving disease model. Leukemia 2020; 34 (11): 2840–2857. doi: 10.1038/s41375-020- 0944-4.
13. Bhatia A, Hatzoglou V, Ulaner G et al. Neurologic and oncologic features of Erdheim-Chester disease: a 30-patient series. Neuro Oncol 2020; 22 (7): 979–992. doi: 10.1093/neuonc/noaa008.
14. Starkebaum G, Hendrie P. Erdheim-Chester disease. Best Pract Res Clin Rheumatol 2020; 34 (4): 101510. doi: 10.1016/j.berh.2020.101510.
15. He T, Cui L, Niu N et al. Bone mineral density and bone microarchitecture in a cohort of patients with Erdheim-Chester Disease. Orphanet J Rare Dis 2020; 15 (1): 236. doi: 10.1186/s13023-020-01518-1.
16. Adam Z, Petrášová H, Řehák Z et al. Hodnocení pětileté léčby Erdheimovy-Chesterovy nemoci anakinrou – kazuistika a přehled literatury. Vnitr Lek 2016; 62 (10): 820–832.
17. Ghotra AS, Thompson K, Lopez-Mattei J et al. Cardiovascular manifestations of Erdheim-Chester disease. Echocardiography 2019; 36 (2): 229–236. doi: 10.1111/echo.14231.
18. Hurtado M, Cortes T, Goyal G et al. OR32-1 Endocrine manifestations of Erdheim-Chester disease: the Mayo clinic experience. J Endocr Soc 2019; 3 (Suppl 1): OR32-1. doi: 10.1210/js.2019-OR32-1.
19. Courtillot C, Laugier Robiolle S, Cohen-Aubart F et al. Endocrine manifestations in a monocentric cohort of 64 patients with Erdheim-Chester disease. J Clin Endocrinol Metab 2016; 101 (1): 305–313. doi: 10.1210/jc.2015-3357.
20. Refardt J, Winzeler B, Christ-Crain M. Diabetes insipidus: an update. Endocrinol Metab Clin North Am 2020; 49 (3): 517–531. doi: 10.1016/j.ecl.2020.05.012.
21. Martineau P, Pelletier-Galarneau M, Zeng W. The imaging findings of Erdheim-Chester disease: a multimodality approach to diagnosis and staging. World J Nucl Med 2017; 16 (1): 71–74. doi: 10.4103/1450-1147.181149.
22. Todisco A, Cavaliere C, Vaglio A et al. Erdheim-Chester disease: a challenging diagnosis for an effective therapy. Clin Neurol Neurosurg 2020; 194: 105841. doi: 10.1016/j.clineuro.2020.105841.
23. Xia C, Braunstein Z, Toomey AC et al. S100 proteins as an important regulator of macrophage inflammation. Front Immunol 2018; 8: 1908. doi: 10.3389/fimmu.2017.01908.
24. Young JR, Johnson GB, Murphy RC et al. 18F-FDG PET/CT in Erdheim-Chester disease: imaging findings and potential BRAF mutation biomarker. J Nucl Med 2018; 59 (5): 774–779. doi: 10.2967/jnumed.117.200741.
25. Antunes C, Graça B, Donato P. Thoracic, abdominal and musculoskeletal involvement in Erdheim-Chester disease: CT, MR and PET imaging findings. Insights Imaging 2014; 5 (4): 473–482. doi: 10.1007/s13244-014-0331-7.
26. Keshet Y, Seger R. The MAP kinase signaling cascades: a system of hundreds of components regulates a diverse array of physiological functions. Methods Mol Biol 2010; 661: 3–38. doi: 10.1007/978-1-60761-795-2_1.
27. Dhillon AS, Hagan S, Rath O et al. MAP kinase signalling pathways in cancer. Oncogene 2007; 26 (22): 3279–3290. doi: 10.1038/sj.onc.1210421.
28. Gray JCR, Kim J, Digianvittorio M et al. BRAF-mutated Erdheim-Chester disease: profound response to vemurafenib visualized with serial multimodality imaging. J Natl Compr Canc Netw 2020; 18 (6): 650–655. doi: 10.6004/jnccn.2020.7549.
29. Gow CH, Hsieh MS, Lin YT et al. Validation of immunohistochemistry for the detection of BRAF V600E-mutated lung adenocarcinomas. Cancers (Basel) 2019; 11 (6): 866. doi: 10.3390/cancers11060866.
30. Papo M, Cohen-Aubart F, Trefond L et al. Systemic histiocytosis (Langerhans cell histiocytosis, Erdheim-Chester disease, Destombes-Rosai-Dorfman disease): from oncogenic mutations to inflammatory disorders. Curr Oncol Rep 2019; 21 (7): 62. doi: 10.1007/s11912-019-0810-6.
31. Diamond EL, Durham BH, Haroche J et al. Diverse and targetable kinase alterations drive histiocytic neoplasms. Cancer Discov 2016; 6 (2): 154–165. doi: 10.1158/2159-8290.CD-15-0913.
32. Emile JF, Diamond EL, Hélias-Rodzewicz Z et al. Recurrent RAS and PIK3CA mutations in Erdheim-Chester disease. Blood 2014; 124 (19): 3016–3019. doi: 10.1182/blood-2014-04-570937.
33. El-Habr EA, Levidou G, Trigka EA et al. Complex interactions between the components of the PI3K/AKT/mTOR pathway, and with components of MAPK, JAK/STAT and Notch-1 pathways, indicate their involvement in meningioma development. Virchows Arch 2014; 465 (4): 473–485. doi: 10.1007/s00428-014-1641-3.
34. Xu F, Na L, Li Y et al. Roles of the PI3K/AKT/mTOR signalling pathways in neurodegenerative diseases and tumours. Cell Biosci 2020; 10 (1): 54. doi: 10.1186/s13578-020-00416-0.
35. Stoppacciaro A, Ferrarini M, Salmaggi C et al. Immunohistochemical evidence of a cytokine and chemokine network in three patients with Erdheim-Chester disease: implications for pathogenesis. Arthritis Rheum 2006; 54 (12): 4018–4022. doi: 10.1002/art.22280.
36. Cavalli G, Biavasco R, Borgiani B et al. Oncogene-induced senescence as a new mechanism of disease: the paradigm of Eerdheim-Chester disease. Front Immunol 2014; 5: 281. doi: 10.3389/fimmu.2014.00281.
37. Arnaud L, Gorochov G, Charlotte F et al. Systemic perturbation of cytokine and chemokine networks in Erdheim-Chester disease: a single-center series of 37 patients. Blood 2011; 117 (10): 2783–2790. doi: 10.1182/blood-2010-10-313510.
38. Dagna L, Girlanda S, Langheim S et al. Erdheim-Chester disease: report on a case and new insights on its immunopathogenesis. Rheumatology (Oxford) 2010; 49 (6): 1203–1206. doi: 10.1093/rheumatology/kep461.
39. Goyal G, Shah MV, Call TG et al. Clinical and radiologic responses to cladribine for the treatment of Erdheim--Chester disease. JAMA Oncol 2017; 3 (9): 1253–1256. doi: 10.1001/jamaoncol.2017.0041.
40. Adam Z, Řehák Z, Koukalová R et al. PET-CT dokumentovaná kompletní 4letá remise Erdheimovy- -Chesterovy nemoci po léčbě kladribinem. Vnitr Lek 2014; 60 (5–6): 499–511.
41. Haroun F, Millado K, Tabbara I. Erdheim-Chester disease: comprehensive review of molecular profiling and therapeutic advances. Anticancer Res 2017; 37 (6): 2777–2783. doi: 10.21873/anticanres.11629.
42. Mazor RD, Weissman R, Luckman J et al. Dual BRAF/MEK blockade restores CNS responses in BRAF-mutant Erdheim-Chester disease patients following BRAF inhibitor monotherapy. Neurooncol Adv 2020; 2 (1): vdaa024. doi: 10.1093/noajnl/vdaa024.
43. Garbe C, Eigentler TK. Vemurafenib. Recent Results Cancer Res 2018; 211: 77–89. doi: 10.1007/978-3-319-91442-8_6.
44. Ruan GJ, Hazim A, Abeykoon JP et al. Low-dose vemurafenib monotherapy in BRAFV600E -mutated Erdheim-Chester disease. Leuk Lymphoma 2020; 61 (11): 2733–2737. doi: 10.1080/10428194.2020.1783447.
45. Verschelden G, Van Laethem J, Velkeniers B et al. Significant response to dabrafenib in a patient with Erdheim-Chester disease with BRAFV600E mutation. Pol Arch Intern Med 2018; 128 (6): 386–388. doi: 10.20452/pamw.4284.
46. Bowyer S, Lee R, Fusi A et al. Dabrafenib and its use in the treatment of metastatic melanoma. Melanoma Manag 2015; 2 (3): 199–208. doi: 10.2217/mmt.15.21.
47. Rissmann R, Hessel MH, Cohen AF. Vemurafenib/dabrafenib and trametinib. Br J Clin Pharmacol 2015; 80 (4): 765–767. doi: 10.1111/bcp.12651.
48. Diamond EL, Durham BH, Ulaner GA et al. Efficacy of MEK inhibition in patients with histiocytic neoplasms. Nature 2019; 567 (7749): 521–524. doi: 10.1038/s41586-019-1012-y.
49. Nordmann TM, Juengling FD, Recher M et al. Trametinib after disease reactivation under dabrafenib in Erdheim-Chester disease with both BRAF and KRAS mutations. Blood 2017; 129 (7): 879–882. doi: 10.1182/blood-2016-09-740217.
50. Gianfreda D, Nicastro M, Galetti M et al. Sirolimus plus prednisone for Erdheim-Chester disease: an open-label trial. Blood 2015; 126 (10): 1163–1171. doi: 10.1182/blood-2015-01-620377.
51. van Bommel EFH, van der Zijden MA, Smak Gregoor PJH et al. Sirolimus monotherapy for Erdheim-Chester disease. Acta Oncol 2019; 58 (6): 901–905. doi: 10.1080/0284186X.2019.1589648.
52. Vidal P. Interferon a in cancer immunoediting: from elimination to escape. Scand J Immunol 2020; 91 (5): e12863. doi: 10.1111/sji.12863.
53. Vantuchová Y. Nežádoucí účinky léčby interferonem alfa. Dermatol Praxi 2010; 4 (3): 142–143.
54. Iaremenko O, Petelytska L, Dyadyk O et al. Clinical presentation, imaging and response to interferon-alpha therapy in Erdheim-Chester disease: case-based review. Rheumatol Int 2020; 40 (9): 1529–1536. doi: 10.1007/s00296-020-04627-z.
55. Kissová J. Interferon-alfa v léčbě myeloproliferativních onemocnění. Vnitr Lek 2019; 65 (11): 699–703.
56. Aouba A, Georgin-Lavialle S, Pagnoux C et al. Rationale and efficacy of interleukin-1 targeting in Erdheim-Chester disease. Blood 2010; 116 (20): 4070–4076. doi: 10.1182/blood-2010-04-279240.
57. Adam Z, Szturz P, Bučková P et al. Blokáda receptoru pro interleukin-1 preparátem anakinra vedla u pacienta s Erdheimovou-Chesterovou nemocí k vymizení patologické únavy, k poklesu markerů zánětu a ústupu fibrózy v retroperitoneu – popis případu a přehled literárních údajů. Vnitr Lek 2012; 58 (4): 313–318.
58. Cohen-Aubart F, Maksud P, Saadoun D et al. Variability in the efficacy of the IL1 receptor antagonist anakinra for treating Erdheim-Chester disease. Blood 2016; 127 (11): 1509–1512. doi: 10.1182/blood-2015-09-672 667.
Štítky
Paediatric clinical oncology Surgery Clinical oncologyČlánok vyšiel v časopise
Clinical Oncology
2021 Číslo 6
- Metamizole at a Glance and in Practice – Effective Non-Opioid Analgesic for All Ages
- Metamizole vs. Tramadol in Postoperative Analgesia
- Spasmolytic Effect of Metamizole
- Possibilities of Using Metamizole in the Treatment of Acute Primary Headaches
- Current Insights into the Antispasmodic and Analgesic Effects of Metamizole on the Gastrointestinal Tract
Najčítanejšie v tomto čísle
- Waldenström macroglobulinemia
- Erdheim-Chester disease
- Advanced stages of classical Hodgkin lymphoma – first-line treatment options
- Recommendation for preventive and therapeutic skin care of patients undergoing radiotherapy