Future of lung cancer treatment
Authors:
L. Petruželka; J. Špaček; L. Křížová
Authors place of work:
Onkologická klinika 1. LF UK a VFN a ÚVN Praha
Published in the journal:
Klin Onkol 2021; 34(Supplementum 1): 71-81
Category:
Review
doi:
https://doi.org/10.48095/ ccko2021S71
Summary
The evolution of lung cancer treatment is an example of new perspectives in clinical oncology. Genomically determined targeted therapy of non-small cell lung cancer (NSCLC) is developing very rapidly with the gradual identification of new target structures and the concomitant development of innovative drugs are a great promise for the future. The historical development of systemic treatment of NSCLC is a model example of the path to accurate (precise) treatment. The innovation of the treatment has led to the shift from (non-targeted) cytostatic treatment to targeted therapy and immunotherapy. The targeted treatment and immunotherapy with checkpoint inhibitors have led to breakthrough prolongation of survival in patients with advanced NSCLC. According to a recent European Society for Medical Oncology (ESMO) recommendation, NSCLC is therefore one of the diagnoses where an examination using the next-generation sequencing panel should be performed as a standard.
Keywords:
precision medicine – personalized medicine – agnostic tumor therapy –next-generation sequencing – checkpoint inhibitors – targeted therapy
Zdroje
1. Hyman DM, Taylor BS, Baselga J. Implementing genome-driven oncology. Cell 2017; 168 (4): 584–599. doi: 10.1016/j.cell.2016.12.015.
2. Brahmer JR, Rodriguez-Abreu D, Robinson AG et al. KEYNOTE-024 5-year OS update: first-line (1L) pembrolizumab (pembro) vs platinum-based chemotherapy (chemo) in patients (pts) with metastatic NSCLC and PD-L1 tumour proportion score (TPS) ≥ 50%. Annal Oncol 2020; 31 (suppl_4): S1142–S1215.
3. Šesták Z. Znáte všechny -omiky? Vesmír 2001; 80: 357.
4. Hirsch V. Turning EGFR mutation-positive non-small-cell lung cancer into a chronic disease: optimal sequential therapy with EGFR tyrosine kinase inhibitors. Ther Adv Med Oncol 2018; 10: 1758834017753338. doi: 10.1177/1758834017753338. eCollection 2018.
5. Onozato R, Kosaka T, Kuwano H et al. Activation of MET by gene amplification or by splice mutations deleting the juxtamembrane domain in primary resected lung cancers. J Thorac Oncol 2009; 4 (1): 5–11. doi: 10.1097/JTO.0b013e3181913e0e.
6. Wolf J, Seto T, Han JY et al. Capmatinib in MET exon 14-mutated or MET-amplified Non-small-cell lung cancer. N Engl J Med 2020; 383 (10): 944–957. doi: 10.1056/NEJMoa2002787.
7. Novartis. Tabrecta (capmatinib) tablets, for oral use. [online]. Available from: https: //www.hcp.novartis.com/products/tabrecta/met-exon-14-skipping-mutation-nsclc/.
8. Wang R, Hu H, Pan Y et al. RET fusions define a unique molecular and clinicopathologic subtype of non-small-cell lung cancer. J Clin Oncol 2012; 30 (35): 4352–4359. doi: 10.1200/JCO.2012.44.1477.
9. Drilon A, Oxnard GR, Tan DS et al. Efficacy of selpercatinib in RET fusion-positive non-small-cell lung cancer. N Engl J Med 2020; 383 (9): 813–824. doi: 10.1056/NEJMoa2005653.
10. Pralsetinib capsules, for oral use. United States prescribing information. [online]. Available from: https: //www.accessdata.fda.gov/drugsatfda_docs/label/2020/213721s000lbl.pdf.
11. Kinno T, Tsuta K, Shiraishi K et al. Clinicopathological features of nonsmall cell lung carcinomas with BRAF mutations. Ann Oncol 2014; 25 (1): 138–142. doi: 10.1093/annonc/mdt495.
12. Mazieres J, Drilon AE, Mhanna L et al. Efficacy of immune-checkpoint inhibitors (ICI) in non-small cell lung cancer (NSCLC) patients harboring activating molecular alterations (ImmunoTarget). J Clin Oncol 2018; 36S: ASCO #9010.
13. Hong DS, Bauer TM, Lee JJ et al. Larotrectinib in adult patients with solid tumours: a multi-centre, open-label, phase I dose-escalation study. Ann Oncol 2019; 30 (20): 325–331. doi: 10.1093/annonc/mdy539.
14. Doebele RC, Drilon A, Paz-Ares L et al. Entrectinib in patients with advanced or metastatic NTRK fusion-positive solid tumours: integrated analysis of three phase 1-2 trials. Lancet Oncol 2020; 21 (2): 271–282. doi: 10.1016/S1470-2045 (19) 30691-6.
15. Pillai RN, Behera M, Berry LD et al. HER2 mutations in lung adenocarcinomas: a report from the Lung Cancer Mutation Consortium. Cancer 2017; 123 (21): 4099–4105. doi: 10.1002/cncr.30869.
16. Li BT, Shen R, Buonocore D et al. Ado-trastuzumab emtansine for patients with HER2-mutant lung cancers: results from a phase II basket trial. J Clin Oncol 2018; 36 (24): 2532–2537. doi: 10.1200/JCO.2018.77. 9777.
17. Smit EF, Nakagawa K, Nagasaka M et al. Trastuzumab deruxtecan (T-DXd; DS-8201) in patients with HER2-mutated metastatic non-small cell lung cancer (NSCLC): interim results of DESTINY-Lung01. J Clin Oncol 2020; 38S: ASCO #9504.
18. Friedlaender A, Drilon A, Weiss GJ et al. KRAS as a druggable target in NSCLC: rising like a phoenix after decades of development failures. Cancer Treat Rev 2020; 85: 101978. doi: 10.1016/j.ctrv.2020.101978.
19. Nusrat M, Roszik J, Holla V et al. Therapeutic vulnerabilities among KRAS G12C mutant (mut) advanced cancers based on co-alteration (co-alt) patterns. J Clin Oncol 2020; 38 (15): Abstract 3625.
20. Scheffler M, Ihle MA, Hein R et al. K-ras mutation subtypes in NSCLC and associated co-occurring mutations in other oncogenic pathways. J Thorac Oncol 2019; 14 (4): 606–616. doi: 10.1016/j.jtho.2018.12.013.
21. Nagasaka M, Li Y, Sukari Aet al. KRAS G12C Game of Thrones, which direct KRAS inhibitor will claim the iron throne? Cancer Treat Rev 2020; 84: 101974.) doi: 10.1016/j.ctrv.2020.101974.
22. Roman M, Baraibar I, Lopez Iet al. KRAS oncogene in non-small cell lung cancer: clinical perspectives on the treatment of an old target. Mol Cancer 2018; 17 (1): 33. doi: 10.1186/s12943-018-0789-x.
23. Hallin J, Engstrom LD, Hargis Let al. The KRAS G12C inhibitor MRTX849 provides insight toward therapeutic susceptibility of KRAS-mutant cancers in mouse models and patients. Cancer Discov 2020; 10 (1): 54–71. doi: 10.1158/2159-8290.CD-19-1167.
24. Janne PA, Papadopoulos K, Ou I et al. A phase 1 clinical trial evaluating the pharmacokinetics (PD), safety, and clinical activity of MRTX849, a mutant-selective small molecule KRAS G12C inhibitor, in advanced solid tumors. [online]. Available from: https: //www.mirati.com/wp-content/uploads/AACR-NCI-EORTC-Clinical-Data-Presentation_Janne_October-2019-1-1.pdf.
25. Kim JH, Kim HS, Kim BJ. Prognostic value of KRAS mutation in advanced non-small-cell lung cancer treated with immune checkpoint inhibitors: A meta-analysis and review. Oncotarget 2017; 8 (29): 48248–48252. doi: 10.18632/oncotarget.17594.
26. Herbst RS, Lopes G, Kowalski DM et al. Association of KRAS mutational status with response to pembrolizumab monotherapy given as first-line therapy for PD-L1-positive advanced non-squamous NSCLC in KEYNOTE-042. Ann Oncol 2019; 30 (Suppl 11): Abstract LBA4.
27. Fakih M, O’Neil B, Price TJ et al. Phase 1 study evaluating the safety, tolerability, pharmacokinetics (PK), and efficacy of AMG 510, a novel small molecule KRASG12C inhibitor, in advanced solid tumors. J Clin Oncol 2019; 37 (15): Abstract 3003.
28. Hong DS, Fakih MG, Strickler JH et al. KRASG12C inhibition with sotorasib in advanced solid tumors. N Eng J Med 2020; 383 (13): 1207–1217. doi: 10.1056/NEJMoa1917239.
29. Altmann DM. A Nobel prize-worthy pursuit: cancer immunology and harnessing immunity to tumour neoantigens. Immunology 2018; 155 (3): 283–284. doi: 10.1111/imm.13008.
30. Gadgeel S, Rodriguez-Abreu Det al. KRAS mutational status and efficacy in KEYNOTE-189: pembrolizumab (pembro) plus chemotherapy (chemo) vs placebo plus chemo as first-line therapy for metastatic non-squamous NSCLC. Ann Oncol 2019; 30 (Suppl 11): Abstract L BA5.
31. Andersen MH: Anti-cancer immunotherapy: breakthroughs and future strategies. Semin Immunopathol 2019; 41 (1): 1–3 doi: 10.1007/s00281-018-0711-z.
32. Tang J, Shalabi A, Hubbard-Lucey VM. Comprehensive analysis of the clinical immuno-oncology landscape. Ann Oncol 2018; 29 (1): 84–91. doi: 10.1093/annonc/mdx755.
33. Vadedeplay RK, Kharel P, Pandey R et al. Review of indication of FDA-approved immune checkpoint inhibitors per NCCN guidelines with the level of evidence. Cancers 2020; 12 (3): 738. doi: 10.3390/cancers12030738.
34. Petruželka L. Imunoterapie nemalobuněčnych karcinomů plic. [online]. Dostupné z: https: //www.worldmednet.cz/sk/imunoterapie-nemalobunecnych-karcinomu-plic-jak-dal-po-asco-2018/.
35. Uruga H, Mino-Kenudson M. Predictive biomarkers for response to immune checkpoint inhibitors in lung cancer: PD-L1 and beyond. Virchows Arch 2021; 478 (1): 31–44. doi: 10.1007/s00428-021-03030-8.
36. Lo Russo G, Moro M, Sommariva M et al. Antibody-Fc/FcR interaction on macrophages as a mechanism for hyperprogressive disease in non-small cell lung cancer subsequent to PD-1/PD-L1 blockade. Clin Cancer Res 2019; 25 (3): 989–999. doi: 10.1158/1078-0432.CCR-18-1390.
37. Petruželka L. Jak, kdy a proč hodnotit léčebnou odpověď na léčbu imunoterapií „check point inhibitory“ při léčbě pokročilých nemalobuněčných plicních karcinomů (NSCLC). Onkologie 2019; 12 (6) 278–281.
38. Foster CC. Pitroda SP, Weichselbaum RR. Beyond palliation: the rationale for metastasis-directed therapy for metastatic non–small cell lung cancer. J Thorac Oncol 2019; 14 (9): 1510–1512. doi: 10.1016/j.jtho.2019.05.025.
39. Gentzler RD, Riley DO, Martin LW. Striving toward improved outcomes for surgically resectable non-small cell lung cancer: the promise and challenges of neoadjuvant immunotherapy. Curr Oncol Rep 2020; 22 (11): 109. doi: 10.1007/s11912-020-00969-w.
40. Sijia Ren, Chunguo Wang, Jianfei Shen et al. Neoadjuvant immunotherapy with resectable non-small cell lung cancer: recent advances and future challenges. J Thorac Dis 2020; 12 (4): 1615–1620. doi: 10.21037/jtd.2020.03.44.
41. Taube JM, Akturk G, Angelo M et al. The Society for Immunotherapy of Cancer statement on best practices for multiplex immunohistochemistry (IHC) and immunofluorescence (IF) staining and validation. J Immunother Cancer 2020; 8 (1): e000155. doi: 10.1136/jitc-2019-000155.
42. Rosenbaum M, Khosrowjerdi S, Kamesan V et al. The utility of PD-L1/CD8 dual immunohistochemistry for prediction of response to immunotherapy in non-small cell lung cancer (NSCLC). [online]. Available from: https: //www.jto.org/article/S1556-0864 (18) 31694-0/fulltext.
43. Fumet JD, Richard C, Ledys F et al. Prognostic and predictive role of CD8 and PD-L1 determination in lung tumor tissue of patients under anti-PD-1 therapy. Br J Cancer 2018; 119 (8): 950–960. doi: 10.1038/s41416-018-0220-9.
44. Gettinger SN, Choi J, Mani N et al. A dormant TIL phenotype defines non-small cell lung carcinomas sensitive to immune checkpoint blockers. Nat Commun 2018; 9 (1): 3196. doi: 10.1038/s41467-018-05032-8.
45. Steuer CE, Ramalingam SS. Tumor mutation burden: leading immunotherapy to the era of precision medicine? J Clin Oncol 2018; 36 (7): 631–632. doi: 10.1200/JCO.2017.76.8770.
46. Fancello L, Gandini S, Pelicci PG et al. Tumor mutational burden quantification from targeted gene panels: major advancements and challenges. J Immunother Cancer 2019; 7 (1): 183. doi: 10.1186/s40425-019-0647-4.
47. Merino DM, McShane LM, Fabrizio D et al. Establishing guidelines to harmonize tumor mutational burden (TMB): in silico assessment of variation in TMB quantification across diagnostic platforms: Phase I of the friends of cancer research TMB harmonization project. J Immunother Cancer 2020; 8 (1): e000147. doi: 10.1136/jitc-2019-000147.
48. Herbst RS, Lopes G, Kowalski DM et al. Association between tissue TMB (tTMB) and clinical outcomes with pembrolizumab monotherapy (pembro) in PD-L1-positive advanced NSCLC in the KEYNOTE-010 and -042 trials. [onine]. Available from: https: //www.sciencedirect.com/science/article/pii/S0923753419604370.
49. Ready N, Hellmann MD, Awad MM et al. First-line nivolumab plus ipilimumab in advanced non-small-cell lung cancer (CheckMate 568): outcomes by programmed death ligand 1 and tumor mutational burden as biomarkers. J Clin Oncol 2019; 37 (12): 992–1000. doi: 10.1200/JCO.18.01042.
50. Hellmann MD, Ciuleanu TE, Pluzanski A et al. Nivolumab plus ipilimumab in lung cancer with a high tumor mutational burden. N Engl J Med 2018; 378 (22): 2093–2104. doi: 10.1056/NEJMoa1801946.
51. Langer C, Gadgeel S, Borghaei H et al. OA04.05 KEYNOTE-021: TMB and outcomes for carboplatin and pemetrexed with or without pembrolizumab for nonsquamous NSCLC. [online]. Available from: https: //www.jto.org/article/S1556-0864 (19) 31109-8/abstract.
52. Garassino MC, Gadgeel SM, Rodriguez-Abreu D et al. Evaluation of blood TMB (bTMB) in KEYNOTE-189: pembrolizumab (pembro) plus chemotherapy (chemo) with pemetrexed and platinum versus placebo plus chemo as first-line therapy for metastatic nonsquamous NSCLC. [online]. Available from: https: //ascopubs.org/doi/abs/10.1200/JCO.2020.38.15_suppl.9521.
53. Gibson, RG. Fibre and effects on probiotics (the prebiotic concept). Clinical Nutrition Supplements 2004; 1 (2): 25–31.
54. Guarner F, Malagelada J-R. Gut flora in health and disease. Lancet 2003; 361 (9356): 512–519. doi: 10.1016/S0140-6736 (03) 12489-0.
55. Sender R, Fuchs S, Milo R. Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans. Cell 2016; 164 (3): 337–340. doi: 10.1016/j.cell.2016.01.013.
56. Borody TJ, Warren EF, Leis SM et al. Bacteriotherapy using fecal flora: toying with human motions. J Clin Gastroenterol 2004; 38 (6): 475–483. doi: 10.1097/01.mcg.0000128988.13808.dc.
57. Zitvogel L, Ma Y, Raoult D et al. The microbiome in cancer immunotherapy: diagnostic tools and therapeutic strategies. Science 2018; 359 (6382): 1366–1370. doi: 10.1126/science.aar6918.
58. Routy B, Le Chatalier E, Derosa L et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 2017; 359 (6371): 91–97. doi: 10.1126/science.aan3706.
59. Gopalakrishnan V, Spencer CN, Nezi Let al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science 2017; 359 (6371): 97–103. doi: 10.1126/science.aan4236.
60. Manieri NA, Chiang EY, Grogan JL. TIGIT: a key inhibitor of the cancer immunity cycle. Trends Immunol 2017; 38 (1): 20–28. doi: 10.1016/j.it.2016.10.002.
61. Ventola CL. Cancer immunotherapy, part 3: challenges and future trends. PT 2017; 42 (8): 514–521.
62. Rodriguez-Abreu D, Johnson ML, Hussein MA et al. Primary analysis of a randomized, double-blind, phase II study of the anti-TIGIT antibody tiragolumab plus atezolizumab versus placebo plus atezolizumab as 1L treatment in patients with PD-L1-selected NSCLC (CYTISCAPE). [online]. Available from: https: //www.researchgate.net/publication/341630619_Primary_analysis_of_a_randomized_double-blind_phase_II_study_of_the_anti-TIGIT_antibody_tiragolumab_tira_plus_atezolizumab_atezo_versus_placebo_plus_atezo_as_first-line_1L_treatment_in_patients_with_P.
63. Harjunpää H, Guillerey C. TIGIT as emerging immune checkpoint. ClinExp Immunol 2020, 200 (2): 108–119. doi: 10.1111/cei.13407.
64. Li Z, Jiang XZhang W. TROP2 overexpression promotes proliferation and invasion of lung adenocarcinoma cells. Biochem Biophys Res Commun 2016; 470 (1): 197–204. doi: 10.1016/j.bbrc.2016.01.032.
65. US National Library of Medicine. First-in-human study of DS-1062a for advanced solid tumors. [online]. Available from: https: //clinicaltrials.gov/ct2/show/NCT03401385.
66. Campbell JD, Alexandrov A, Kim J et al. Distinct patterns of somatic genome alterations in lung adenocarcinomas and squamous cell carcinomas. Nat Genet 2016; 48 (6): 607–616. doi: 10.1038/ng.3564.
67. Li BT et al. HER2 amplification and HER2 mutation are distinct molecular targets in lung cancers. J Thorac Oncol 2016; 11 (3): 414–419. doi: 10.1016/j.jtho.2015.10.025.
68. US National Library of Medicine. DS-8201a in human epidermal growth factor receptor 2 (HER2) -expressing or -mutated non-small cell lung cancer (DESTINY-Lung01). [online].
69. Ribas A, Hersey P, Midleton MR et al. New challenges in endpoints for drug development in advanced melanoma. Clin Cancer Res 2012; 18 (2): 336–341. doi: 10.1158/1078-0432.CCR-11-2323.
70. Li T, Kung H-J, Mack PC et al. Genotyping and genomic profiling of non-small cell lung cancer: implications of current and future therapies. J Clin Oncol 2013; 31 (8): 1039–1049. doi: 10.1200/JCO.2012.45.3753.
71. Udagawa H, Matsumoto S, Ohe Y et al. Clinical outcome of non-small cell lung cancer with EGFR/HER2 exon 20 insertions identified in the LC-SCRUM –Japan. J Thorac Oncol 2019; 14 (10): S224.
72. Consoli ML, Steinberg da Silva R, Nicoli JR et al. Impact of oral administration of Saccharomyces boulardii on gene expression of intestinal cytokines in patients undergoing colon resection. [online]. Available from: https: //aspenjournals.onlinelibrary.wiley.com/ doi/ abs/ 10.1177/ 0148607115584387.
73. Hibberd AA, Lyra A, Ouwehad AC et al. Intestinal microbiota is altered in patients with colon cancer and modified by probiotic intervention. [online]. Available from: https: / / bmjopengastro.bmj.com/ content/ bmjgast/ 4/ 1/ e000145.full.pdf.
Štítky
Paediatric clinical oncology Surgery Clinical oncologyČlánok vyšiel v časopise
Clinical Oncology
2021 Číslo Supplementum 1
- Spasmolytic Effect of Metamizole
- Metamizole at a Glance and in Practice – Effective Non-Opioid Analgesic for All Ages
- Metamizole in perioperative treatment in children under 14 years – results of a questionnaire survey from practice
- Current Insights into the Antispasmodic and Analgesic Effects of Metamizole on the Gastrointestinal Tract
- Obstacle Called Vasospasm: Which Solution Is Most Effective in Microsurgery and How to Pharmacologically Assist It?
Najčítanejšie v tomto čísle
- Lung cancer – dia nosis and early detection
- Surgical treatment of lung cancer
- Pokroky v léčbě malobuněčného karcinomu plic
- Future of lung cancer treatment