#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Coherence controlled holographic microscopy – a tool for detection of new biomarkers of head and neck squamous cell carcinoma


Authors: M. Veselý 1;  B. Gál 1 ;  J. Rottenberg 1;  M. Palenik 1;  J. Hanák 1;  D. Zicha 2,3
Authors place of work: Klinika otorinolaryngologie a chirurgie hlavy a krku LF MU a FN u sv. Anny v Brně 1;  CEITEC – Central European Institute of Technology, Brno 2;  Ústav fyzikálního inženýrství, Fakulta strojního inženýrství, VUT v Brně 3
Published in the journal: Klin Onkol 2022; 35(2): 128-131
Category: Review
doi: https://doi.org/10.48095/ccko2022128

Summary

Background: Squamous cell carcinoma of the head and neck is characterized by local invasiveness and metastases to regional lymph nodes. In 60% of cases, these tumours are dia­gnosed at an advanced stage, and the prognosis is unfavorable. One of the important factors of local, hematogenous or lymphogenic spread of the tumour in the human body is tumour cells‘ migration ability. Advanced microscopic methods provide a new perspective on cell migration. Purpose: This paper presents a coherence controlled holographic microscopy method that provides a non-invasive quantitative evaluation of morphological and dynamic properties of living tumour cells. In connection with this method, new potential bio­markers are emerging, the significance of which, however, needs to be verified by correlation with clinical data.

Keywords:

squamous cell carcinoma – Cell migration – tumor markers – epithelial-mesenchymal transition – head and neck carcinoma, coherence-controlled holographic microscopy


Zdroje

1. Gatta G, Botta L, Sánchez MJ et al. Prognoses and improvement for head and neck cancers dia­gnosed in Europe in early 2000s: the EUROCARE-5 population-based study. Eur J Cancer 2015; 51 (15): 2130–2143. doi: 10.1016/j.ejca.2015.07.043.

2. Linkos. O nádorech hlavy a krku. [online]. Dostupné z: https: //www.linkos.cz/pacient-a-rodina/onkologicke-dia­gnozy/nadory-hlavy-a-krku-c00-14-c30-32/o-nadorech-hlavy-a-krku/.

3. Nibu KI, Ebihara Y, Ebihara M et al. Quality of life after neck dissection: a multicenter longitudinal study by the Japanese Clinical Study Group on Standardization of Treatment for Lymph Node Metastasis of Head and Neck Cancer. Int J Clin Oncol 2010; 15 (1): 33–38. doi: 10.1007/s10147-009-0020-6.

4. Leemans CR, Tiwari R, Nauta JJ et al. Recurrence at the primary site in head and neck cancer and the signifi­- cance of neck lymph node metastases as a prognos­tic factor. Cancer 1994; 73 (1): 187–190. doi: 10.1002/1097- 0142 (19940101) 73: 1<187:: aid-cncr2820730132>3.0. co; 2-j.

5. Valastyan S, Weinberg RA. Tumor metastasis: molecular insights and evolving paradigms. Cell 2011; 147 (2): 275–292. doi: 10.1016/j.cell.2011.09.024.

6. Patel LR, Camacho DF, Shiozawa Y et al. Mechanisms of cancer cell metastasis to the bone: a multistep process. Future Oncol 2011; 7 (11): 1285–1297. doi: 10.2217/fon.11.112.

7. Yamada KM, Sixt M. Mechanisms of 3D cell migration. Nat Rev Mol Cell Biol 2019; 20 (12): 738–752. doi: 10.1038/s41580-019-0172-9.

8. Tarin D, Thompson EW, Newgreen DF. The fallacy of epithelial mesenchymal transition in neoplasia. Cancer Res 2005; 65 (14): 5996–6001. doi: 10.1158/0008-5472.CAN-05-0699.

9. Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest 2009; 119 (6): 1420–1428. doi: 10.1172/JCI39104.

10. Loh CY, Chai JY, Tang TF et al. The E-cadherin and N-cadherin switch in epithelial-to-mesenchymal transition: signaling, therapeutic implications, and challenges. Cells 2019; 8 (10): 1118. doi: 10.3390/cells8101118.

11. Scanlon CS, Van Tubergen EA, Inglehart RC et al. Biomarkers of epithelial-mesenchymal transition in squamous cell carcinoma. J Dent Res 2013; 92 (2): 114–121. doi: 10.1177/0022034512467352.

12. Kovaříková P, Michalova E, Knopfová L et al. Methods for studying tumor cell migration and invasiveness. Klin Onkol 2014; 27 (Suppl 1): S22–S27. doi: 10.14735/amko20141s22.

13. Le Dévédec SE, Yan K, De Bont H et al. Systems microscopy approaches to understand cancer cell migration and metastasis. Cell Mol Life Sci 2010; 67 (19): 3219–3240. doi: 10.1007/s00018-010-0419-2.

14. Deng X, Xiong F, Li X et al. Application of atomic force microscopy in cancer research. J Nanobio­technology 2018; 16 (1): 102. doi: 10.1186/s12951-018-0428-0.

15. Slabý T, Kolman P, Dostál Z et al. Off-axis setup taking full advantage of incoherent ilumination in coherence-controlled holographic microscope. Opt Express 2013; 21 (12): 14747–14762. doi: 10.1364/OE.21.01 4747.

16. Shashni B, Ariyasu S, Takeda R et al. Size-based differentiation of cancer and normal cells by a particle size analyzer assisted by a cell-recognition PC software. Biol Pharm Bull 2018; 41 (4): 487–503. doi: 10.1248/bpb.b17-00776.

17. Kolman P, Chmelík R. Coherence-controlled holographic microscope. Opt Express 2010; 18 (21): 21990–22003. doi: 10.1364/OE.18.021990.

18. Kovářová K. Měření rozložení ekvivalentu suché hmoty buňky kvantitativním fázovým kontrastem koherencí řízeného holografického mikroskopu. Brno: VUT 2013.

19. Aknoun S, Savatier J, Bon P et al. Living cell dry mass measurement using quantitative phase imaging with quadriwave lateral shearing interferometry: an accuracy and sensitivity discussion. J Biomed Opt 2015; 20 (12): 126009. doi: 10.1117/1.JBO.20.12.126009.

20. Miniotis MF, Mukwaya A, Wingren AG. Digital holographic microscopy for non-invasive monitoring of cell cycle arrest in L929 cells. PLoS One 2014; 9 (9): 1–6. doi: 10.1371/journal.pone.0106546.

21. Collakova J, Krizova A, Kollarova et al. Coherence-controlled holographic microscopy enabled recognition of necrosis as the mechanism of cancer cells death after exposure to cytopathic turbid emulsion. J Biomed Opt 2015; 20 (11): 111213. doi: 10.1117/1.JBO.20.11.111 213.

22. Balvan J, Krizova A, Gumulec J et al. Multimodal holographic microscopy: distinction between apoptosis and oncosis. PLoS One 2015; 10 (3): e0121674. doi: 10.1371/journal.pone.0121674.

23. Kollarova V, Collakova J, Dostal Z et al. Quantitative phase imaging through scattering media by means of coherence-controlled holographic microscope. J Biomed Opt 2015; 20 (11): 111206. doi: 10.1117/1.JBO.20.11.111206.

24. Dorazilová J, Štrbková L, Ďuriš M et al. Biopolymeric scaffold for cell visualisation in 3D environment using coherence-controlled holographic microscopy. Eng Biomat 2019; 22 (153): 43.

25. Tolde O, Gandalovičová A, Křížová A et al. Quantitative phase imaging unravels new insight into dynamics of mesenchymal and amoeboid cancer cell invasion. Sci Rep 2018; 8 (1): 12020. doi: 10.1038/s41598-018-30 408-7.

26. Gál B, Veselý M, Čolláková J et al. Distinctive behaviour of live bio­psy-derived carcinoma cells unveiled using coherence-controlled holographic microscopy. PLoS One 2017; 12 (8): e0183399. doi: 10.1371/journal.pone.0183399.

27. Guidi A, Codecà C, Ferrari D. Chemotherapy and immunotherapy for recurrent and metastatic head and neck cancer: a systematic review. Med Oncol 2018; 35 (3): 37. doi: 10.1007/s12032-018-1096-5.

28. Budach V, Tinhofer I. Novel prognostic clinical factors and bio­markers for outcome prediction in head and neck cancer: a systematic review. Lancet Oncol 2019; 20 (6): e313–e326. doi: 10.1016/S1470-2045 (19) 30177-9.

29. Solomon B, Young RJ, Rischin D. Head and neck squamous cell carcinoma: genomics and emerging bio­markers for immunomodulatory cancer treatments. Semin Cancer Biol 2018; 52 (2): 228–240. doi: 10.1016/j.semcancer.2018.01.008.

30. Curtarelli RB, Gonçalves JM, Dos Santos LGP et al. Expression of cancer stem cell bio­markers in human head and neck carcinomas: a systematic review. Stem Cell Rev Rep 2018; 14 (6): 769–784. doi: 10.1007/s12015-018-98 39-4.

31. Pfister DG, Spencer S, Adelstein D et al. Head and neck cancers, version 2.2020, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw 2020; 18 (7): 873–898. doi: 10.6004/jnccn.2020.0031.

32. Economopoulou P, de Bree R, Kotsantis I et al. Dia­g­nostic tumor markers in head and neck squamous cell carcinoma (HNSCC) in the clinical setting. Front Oncol 2019; 9: 827. doi: 10.3389/fonc.2019.00827.

33. Friedman AA, Letai A, Fisher DE et al. Precision medicine for cancer with next-generation functional dia­g­­- nostics. Nat Rev Cancer 2015; 15 (12): 747–756. doi: 10.1038/nrc4015.

34. Gerashchenko TS, Novikov NM, Krakhmal NV et al. Markers of cancer cell invasion: are they good enough? J Clin Med 2019: 8 (8): 1092. doi: 10.3390/jcm8081 092.

35. Wang Z, Popescu G, Tangella KV et al Tissue refractive index as marker of disease. J Biomed Opt 2011; 16 (11): 116017. doi: 10.1117/1.3656732.

36. Calin VL, Mihailescu M, Scarlat EI et al. Evaluation of the metastatic potential of malignant cells by image processing of digital holographic microscopy data. FEBS Open Bio 2017; 7 (10): 1527–1538. doi: 10.1002/2211-5463.12282.

37. Hall A. The cytoskeleton and cancer. Cancer Metastasis Rev 2009; 28 (1–2): 5–14. doi: 10.1007/s10555-008-9166-3.

38. Brinkley BR, Beall PT, Wible LJ et al. Variations in cell form and cytoskeleton in human breast carcinoma cells in vitro. Cancer Res 1980; 40 (9): 3118–3129.

39. Carter SB. Principles of cell motility: the direction of cell movement and cancer invasion. Nature 1965; 208 (5016): 1183–1187. doi: 10.1038/2081183a0.

40. Kemper B, Bauwens A, Vollmer A et al. Label-free quantitative cell division monitoring of endothelial cells by digital holographic microscopy. J Biomed Opt 2010; 15 (3): 036009. doi: 10.1117/1.3431712.

41. El-Schich Z, Leida Mölder A, Gjörloff Wingren A. Quantitative phase imaging for label-free analysis of cancer cells – focus on digital holographic microscopy. Appl Sci 2018; 8 (7): 1027. doi: 10.3390/app8071027.

42. Aslantürk ÖS. In vitro cytotoxicity and cell viability assays: principles, advantages, and disadvantages. [online]. Available from: https: //cdn.intechopen.com/pdfs/57717.pdf.

43. Katt ME, Placone AL, Wong AD et al. In vitro tumor models: advantages, disadvantages, variables, and selecting the right platform. Front Bioeng Biotechnol 2016; 4: 12. doi: 10.3389/fbio­e.2016.00012.

44. Ravi M, Paramesh V, Kaviya SR et al. 3D cell culture systems: advantages and applications. J Cell Physiol 2015; 230 (1): 16–26. doi: 10.1002/jcp.24683.

45. Oppel F, Shao S, Schürmann M et al. An effective primary head and neck squamous cell carcinoma in vitro model. Cells 2019; 8 (6): 555. doi: 10.3390/cells8060555.

46. Zhou B, Chen WL, Wang YY et al. A role for cancer-associated fibroblasts in inducing the epithelial-to-mesenchymal transition in human tongue squamous cell carcinoma. J Oral Pathol Med 2014; 43 (8): 585–592. doi: 10.1111/jop.12172.

47. Gillet JP, Varma S, Gottesman MM. The clinical relevance of cancer cell lines. J Natl Cancer Inst 2013; 105 (7): 452–458. doi: 10.1093/jnci/djt007.

Štítky
Paediatric clinical oncology Surgery Clinical oncology

Článok vyšiel v časopise

Clinical Oncology

Číslo 2

2022 Číslo 2
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#