Fecal microbiota transplantation – new possibility to influence the results of therapy of cancer patients
Authors:
L. Křížová 1; I. Benešová 2; J. Špaček 1; L. Petruželka 1; M. Vočka 1
Authors place of work:
Onkologická klinika 1. LF UK a VFN v Praze
1; Ústav imunologie 2. LF UK a FN Motol, Praha
2
Published in the journal:
Klin Onkol 2022; 35(6): 436-440
Category:
Review
doi:
https://doi.org/10.48095/ccko2022436
Summary
Background: The intestinal microbiome is essential for the function of the human body, it affects not only metabolism and digestion, but also the immune and neurobehavioral systems. The composition of the human intestinal microbiome has been of interest to many scientific teams around the world in recent years, aided by the rapid development of molecular genetics methods. Intestinal microbiome imbalance (so-called dysbiosis) can help develop several pathological conditions such as autoimmune diseases or can be involved in the process of carcinogenesis. Microbiome research in oncology has so far focused most on the effect of intestinal microbiome composition on the effectiveness of checkpoint inhibitors. Differences in the relative proportions of individual bacterial strains and the overall microbiome diversity in patients treated with checkpoint inhibitors appear to be related to the efficacy of this therapy. Many projects are currently studying the possibility of manipulating the composition of the intestinal microbiome, especially by means of fecal microbial transplantation (FMT). Two published clinical studies have confirmed that it is possible to overcome resistance to checkpoint inhibitor therapy in malignant melanoma with this method and to re-establish a clinical response after FMT. One of the problems of this effort is the significant diversity in the composition of the microbiome in different populations. Therefore, knowledge of the microbial composition in a particular population is of key importance. The Department of Oncology of the 1st Faculty of Medicine at Charles University and the General University Hospital in Prague is part of this effort, where a program to investigate intestinal microbiome composition in patients with non-small cell lung cancer, renal cell carcinoma and malignant melanoma during checkpoint inhibitor therapy has been running for several years. Purpose: The aim of the publication is to demonstrate the current information and the importance of fecal transplantation in oncology and also to present our currently ongoing research project.
Keywords:
lung cancer – immunotherapy – Microbiome – malignant melanoma – Renal cell carcinoma – immune checkpoint inhibitors – fecal microbial transplantation – immune reaction
Zdroje
1. Cho I, Blaser MJ. The human microbiome: at the interface of health and disease. Nat Rev Genet 2012; 13 (4): 260–270. doi: 10.1038/nrg3182.
2. Mima K, Sukawa Y, Nishihara R et al. Fusobacterium nucleatum and T cells in colorectal carcinoma. JAMA Oncol 2015; 1 (5): 653–661. doi: 10.1001/jamaoncol.2015.1377.
3. Pushalkar S, Hundeyin M, Daley D et al. The pancreatic cancer microbiome promotes oncogenesis by induction of innate and adaptive immune suppression. Cancer Discov 2018; 8 (4): 403–416. doi: 10.1158/2159-8290.CD-17-1134.
4. Dubin K, Callahan MK, Ren B et al. Intestinal microbiome analyses identify melanoma patients at risk for checkpoint-blockade-induced colitis. Nat Commun 2016; 7: 10391. doi: 10.1038/ncomms10391.
5. Chaput N, Lepage P, Coutzac C et al. Baseline gut microbiota predicts clinical response and colitis in metastatic melanoma patients treated with ipilimumab. Ann Oncol 2017; 28 (6): 1368–1379. doi: 10.1093/annonc/mdx108.
6. Routy B, Le Chatelier E, Derosa L et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 2018; 359 (6371): 91–97. doi: 10.1126/science.aan3706.
7. McQuade JL, Daniel CR, Helmink BA et al. Modulating the microbiome to improve therapeutic response in cancer. Lancet Oncol 2019; 20 (2): e77–e91. doi: 10.1016/S1470-2045 (18) 30952-5.
8. Valdes AM, Walter J, Segal E et al. Role of the gut microbiota in nutrition and health. BMJ 2018; 361: k2179. doi: 10.1136/bmj.k2179.
9. Sommer F, Bäckhed F. The gut microbiota-masters of host development and physiology. Nat Rev Microbiol 2013; 11 (4): 227–238. doi: 10.1038/nrmicro2974.
10. Sun J, Chang EB. Exploring gut microbes in human health and disease: pushing the envelope. Genes Dis 2014; 1 (2): 132–139. doi: 10.1016/j.gendis.2014.08.001.
11. Jandhyala SM, Talukdar R, Subramanyam C et al. Role of the normal gut microbiota. World J Gastroenterol 2015; 21 (29): 8787–8803. doi: 10.3748/wjg.v21.i29.8787.
12. Matijašić M, Meštrović T, Paljetak HČ et al. Gut microbiota beyond bacteria-mycobiome, virome, archaeome, and eukaryotic parasites in IBD. Int J Mol Sci 2020; 21 (8): 2668. doi: 10.3390/ijms21082668.
13. Rudi K, Zhao L. Grand challenges in understanding gut microbes. Front Microbiol 2021; 12: 752829. doi: 10.3389/fmicb.2021.752829.
14. Bajer L, Kverka M, Kostovcik M et al. Distinct gut microbiota profiles in patients with primary sclerosing cholangitis and ulcerative colitis. World J Gastroenterol 2017; 23 (25): 4548–4558. doi: 10.3748/WJG.V23.I25.4548.
15. O’Hara AM, Shanahan F. The gut flora as a forgotten organ. EMBO Rep 2006; 7 (7): 688–693. doi: 10.1038/SJ.EMBOR.7400731.
16. Jandhyala SM, Talukdar R, Subramanyam C et al. Role of the normal gut microbiota. World J Gastroenterol 2015; 21 (29): 8787–8803. doi: 10.3748/WJG.V21.I29.8787.
17. Lee CZ, Zoqratt MZHM, Phipps ME et al. The gut virome in two indigenous populations from Malaysia. Sci Rep 2022; 12 (1): 1824. doi: 10.1038/s41598-022-05656-3.
18. Chin VK, Yong VC, Chong PP et al. Mycobiome in the Gut: a multiperspective review. Mediators Inflamm 2020; 2020: 9560684. doi: 10.1155/2020/9560684.
19. Chibani CM, Mahnert A, Borrel G et al. A catalogue of 1,167 genomes from the human gut archaeome. Nat Microbiol 2022; 7 (1): 48–61. doi: 10.1038/s41564-021-01020-9.
20. Dominguez-Bello MG, Costello EK, Contreras M et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci U S A 2010; 107 (26): 11971–11975. doi: 10.1073/pnas.1002601107.
21. Lawson MAE, O’Neill IJ, Kujawska M et al. Breast milk-derived human milk oligosaccharides promote Bifidobacterium interactions within a single ecosystem. ISME J 2020; 14 (2): 635–648. doi: 10.1038/s41396-019-05 53-2.
22. Yan W, Luo B, Zhang X et al. Association and occurrence of bifidobacterial phylotypes between breast milk and fecal microbiomes in mother–infant dyads during the first 2 years of life. Front Microbiol 2021; 12: 669442. doi: 10.3389/fmicb.2021.669442.
23. Vacca M, Raspini B, Calabrese FM et al. The establishment of the gut microbiota in 1-year-aged infants: from birth to family food. Eur J Nutr 2022; 61 (5): 2517–2530. doi: 10.1007/s00394-022-02822-1.
24. Martinez JE, Kahana DD, Ghuman S et al. Unhealthy lifestyle and gut dysbiosis: a better understanding of the effects of poor diet and nicotine on the intestinal microbiome. Front Endocrinol (Lausanne) 2021; 12: 667066. doi: 10.3389/fendo.2021.667066.
25. Power SE, O’Toole PW, Stanton C et al. Intestinal microbiota, diet and health. Br J Nutr 2014; 111 (3): 387–402. doi: 10.1017/S0007114513002560.
26. Gupta VK, Paul S, Dutta C. Geography, ethnicity or subsistence-specific variations in human microbiome composition and diversity. Front Microbiol 2017; 8: 1162. doi: 10.3389/FMICB.2017.01162/BIBTEX.
27. Gopalakrishnan V, Spencer CN, Nezi L et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science 2018; 359 (6371): 97–103. doi: 10.1126/science.aan4236.
28. Wargo JA, Gopalakrishnan V, Spencer C et al. Association of the diversity and composition of the gut microbiome with responses and survival (PFS) in metastatic melanoma (MM) patients (pts) on anti-PD-1 therapy. J Clin Oncol 2017; 35 (Suppl 15). doi: 10.1200/jco.2017. 35.15_suppl.3008.
29. Frankel AE, Coughlin LA, Kim J et al. Metagenomic shotgun sequencing and unbiased metabolomic profiling identify specific human gut microbiota and metabolites associated with immune checkpoint therapy efficacy in melanoma patients. Neoplasia 2017; 19 (10): 848–855. doi: 10.1016/j.neo.2017.08.004.
30. Limeta A, Ji B, Levin M et al. Meta-analysis of the gut microbiota in predicting response to cancer immunotherapy in metastatic melanoma. JCI Insight 2020; 5 (23): e140940. doi: 10.1172/JCI.INSIGHT.140940.
31. Elkrief A, Derosa L, Kroemer G et al. The negative impact of antibiotics on outcomes in cancer patients treated with immunotherapy: a new independent prognostic factor? Ann Oncol 2019; 30 (10): 1572–1579. doi: 10.1093/annonc/mdz206.
32. Baruch EN, Youngster I, Ben-Betzalel G et al. Fecal microbiota transplant promotes response in immunotherapy-refractory melanoma patients. Science 2021; 371 (6529): 602–609. doi: 10.1126/SCIENCE.ABB5920/SUPPL_FILE/ABB5920_TABLES9.CSV.
33. Davar D, Dzutsev AK, McCulloch JA et al. Fecal microbiota transplant overcomes resistance to anti-PD-1 therapy in melanoma patients. Science 2021; 371 (6529): 595–602. doi: 10.1126/science.abf3 363.
34. Quraishi MN, Widlak M, Bhala N et al. Systematic review with meta-analysis: the efficacy of faecal microbiota transplantation for the treatment of recurrent and refractory Clostridium difficile infection. Aliment Pharmacol Ther 2017; 46 (5): 479–493. doi: 10.1111/APT.14201.
35. Lee CH, Steiner T, Petrof EO et al. Frozen vs fresh fecal microbiota transplantation and clinical resolution of diarrhea in patients with recurrent Clostridium difficile infection: a randomized clinical trial. JAMA 2016; 315 (2): 142–149. doi: 10.1001/JAMA.2015.18098.
36. Marcella C, Cui B, Kelly CR et al. Systematic review: the global incidence of faecal microbiota transplantation-related adverse events from 2000 to 2020. Aliment Pharmacol Ther 2021; 53 (1): 33–42. doi: 10.1111/APT.16148.
37. Cammarota G, Ianiro G, Tilg H et al. European consensus conference on faecal microbiota transplantation in clinical practice. Gut 2017; 66 (4): 569–580. doi: 10.1136/gutjnl-2016-313017.
38. Kassam Z, Lee CH, Yuan Y et al. Fecal microbiota transplantation for Clostridium difficile infection: systematic review and meta-analysis. Am J Gastroenterol 2013; 108 (4): 500–508. doi: 10.1038/AJG.2013.59.
Štítky
Paediatric clinical oncology Surgery Clinical oncologyČlánok vyšiel v časopise
Clinical Oncology
2022 Číslo 6
- Metamizole at a Glance and in Practice – Effective Non-Opioid Analgesic for All Ages
- Metamizole vs. Tramadol in Postoperative Analgesia
- Spasmolytic Effect of Metamizole
- Possibilities of Using Metamizole in the Treatment of Acute Primary Headaches
- Current Insights into the Antispasmodic and Analgesic Effects of Metamizole on the Gastrointestinal Tract
Najčítanejšie v tomto čísle
- Prognostic and predictive factors of brain meningiomas
- Advantages and limitations of 3D organoids and ex vivo tumor tissue culture in personalized medicine for prostate cancer
- Fatal myocarditis after the first dose of nivolumab
- Fecal microbiota transplantation – new possibility to influence the results of therapy of cancer patients