The dyslipidemic effect of cytostatics in the treatment of early breast cancer as a serious risk factor of cardiovascular diseases
Authors:
L. Rušinová 1; M. Kozárová 2; Z. Kozelová 2; M. Valíková-Bavoľárová 3
Authors place of work:
Onkologické centrum, Nemocnica Štefana Kukuru Michalovce, Slovenská republika
1; IV. interná klinika UPJŠ LF a UNLP Košice, Slovenská republika
2; Klinika pracovného lekárstva a klinickej toxikológie UPJŠ LF a UNLP Košice, Slovenská republika
3
Published in the journal:
Klin Onkol 2024; 38(5): 324-330
Category:
Reviews
doi:
https://doi.org/10.48095/ccko2024324
Summary
Backround: The development of highly effective anti-cancer therapies over the past several decades has dramatically changed the situation of patients with malignant tumor disease, who currently achieve a high rate of cure in the early stages of the disease. Despite tremendous progress, chemotherapy remains the primary treatment modality for early breast cancer. However, chemotherapy-related complications have a major impact on cardiovascular morbidity and mortality in this group of patients. Almost 80% of women diagnosed with breast cancer are over 50 years of age and already have risk factors for cardiovascular disease, such as age, family history, hypertension, elevated cholesterol, smoking, diabetes, and elevated body mass index. Most breast cancer patients do not die and, in line with the general population, cardiovascular disease remains the most common cause of death. Clinical research, extensive retrospective analyzes and prospective works describe the dyslipidemic effect of cytostatics, which may predispose to the development of atherosclerotic cardiovascular diseases. The administration of neoadjuvant or adjuvant chemotherapy based on anthracyclines and taxanes can lead to an increase in total cholesterol, triacylglycerides, LDL cholesterol and a decrease in HDL cholesterol. Abnormally high concentrations of lipids in the blood represent one of the main risk factors for the development and progression of cardiovascular diseases. The works also indicate a correlation between serum lipid levels and the rate of achieving pathological complete remission after the administration of neoadjuvant chemotherapy. Dyslipidemia is associated with a worse prognosis in breast cancer patients treated with neoadjuvant chemotherapy. Purpose: The aim of the thesis is to point out the dyslipidemic effects of cytostatics and the risks of atherosclerotic cardiovascular diseases in breast cancer patients who have undergone adjuvant or neoadjuvant chemotherapy for early breast cancer. The identification of cardiovascular risk factors at the beginning of oncological treatment, the monitoring of the lipid spectrum during the treatment and the timely intervention of dyslipidemia treatment escape attention at present.
Keywords:
breast cancer – Chemotherapy – cardiovascular disease – dyslipidemia
Zdroje
1. Sung H, Ferlay J, Siegel RL et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71 (3): 209–249. doi: 10.3322/caac.21660.
2. Arnold M, Morgan E, Rumgay H et al. Current and future burden of breast cancer: global statistics for 2020 and 2040. Breast 2022; 66: 15–23. doi: 10.1016/j.breast.2022.08.010.
3. Mehta LS, Watson KE, Barac A et al. Cardiovascular disease and breast cancer: where these entities intersect: a scientific statement from the American Heart Association. Circulation 2018; 137 (8): e30–e66. doi: 10.1161/CIR.0000000000000556.
4. Haque R, Prout M, Geiger AM et al. Comorbidities and cardiovascular disease risk in older breast cancer survivors. Am J Manag Care 2014; 20 (1): 86–92.
5. Yusuf S, Hawken S, Ounpuu S et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet 2004; 364 (9438): 937–952. doi: 10.1016/S0140-6736 (04) 17018-9.
6. Johnson CB, Davis MK, Law A et al. Shared risk factors for cardiovascular disease and cancer: implications for preventive health and clinical care in oncology patients. Can J Cardiol 2016; 32 (7): 900–907. doi: 10.1016/j.cjca.2016.04.008.
7. Bradshaw PT, Stevens J, Khankari N et al. Cardiovascular disease mortality among breast cancer survivors. Epidemiology 2016; 27 (1): 6–13. doi: 10.1097/EDE.00000000 00000394.
8. Pol T, Held C, Westerbergh J et al. Dyslipidemia and risk of cardiovascular events in patients with atrial fibrillation treated with oral anticoagulation therapy: insights from the ARISTOTLE (Apixaban for Reduction in Stroke and Other Thromboembolic Events in Atrial Fibrillation) trial. J Am Heart Assoc 2018; 7 (3): e007444. doi: 10.1161/JAHA.117.007444.
9. Jung E, Kong SY, Ro YS et al. Serum cholesterol levels and risk of cardiovascular death: a systematic review and a dose-response meta-analysis of prospective cohort studies. Int J Environ Res Public Health 2022; 19 (14): 8272. doi: 10.3390/ijerph19148272.
10. Prior L, Featherstone H, O‘Reilly D et al. Competing mortality risks: predicted cardiovascular disease risk versus predicted risk of breast cancer mortality in patients receiving adjuvant chemotherapy in a single Irish center. Cardiooncology 2021; 7 (1): 8. doi: 10.1186/s40959-021-00096-w.
11. AJCC. Predict Breast Cancer. [online]. Available from: https: //breast.predict.nhs.uk.
12. Rossi L, Stevens D, Pierga JY et al. Impact of adjuvant chemotherapy on breast cancer survival: a real-world population. PLoS One 2015; 10 (7): e0132853. doi: 10.1371/journal.pone.0132853.
13. Zhao L, Zhang B. Doxorubicin induces cardiotoxicity through upregulation of death receptors mediated apoptosis in cardiomyocytes. Sci Rep 2017; 7: 44735. doi: 10.1038/srep44735.
14. Sharma M, Tuaine J, McLaren B et al. Chemotherapy agents alter plasma lipids in breast cancer patients and show differential effects on lipid metabolism genes in liver cells. PLoS One 2016; 11 (1): e0148049. doi: 10.1371/journal.pone.0148049.
15. Schmitz G, Kaminski WE. ATP-binding cassette (ABC) transporters in atherosclerosis. Curr Atheroscler Rep 2002; 4 (3): 243–251. doi: 10.1007/s11883-002-0026-2.
16. Panis C, Binato R, Correa S et al. Short infusion of paclitaxel imbalances plasmatic lipid metabolism and correlates with cardiac markers of acute damage in patients with breast cancer. Cancer Chemother Pharmacol 2017; 80 (3): 469–478. doi: 10.1007/s00280-017-3384-8.
17. He T, Wang C, Tan Q et al. Adjuvant chemotherapy-associated lipid changes in breast cancer patients: a real-word retrospective analysis. Medicine (Baltimore) 2020; 99 (33): e21498. doi: 10.1097/MD.0000000000021498.
18. Arpino G, De Angelis C, Buono G et al. Metabolic and anthropometric changes in early breast cancer patients receiving adjuvant therapy. Breast Cancer Res Treat 2015; 154 (1): 127–132. doi: 10.1007/s10549-015-3586-x.
19. Lu Q, Wu X, Zhu Y et al. Effects of chemotherapy on serum lipids in Chinese postoperative breast cancer patients. Cancer Manag Res 2020; 12: 8397–8408. doi: 10.2147/CMAR.S253397.
20. Tian W, Yao Y, Fan G et al. Changes in lipid profiles during and after (neo) adjuvant chemotherapy in women with early-stage breast cancer: a retrospective study. PLoS One 2019; 14 (8): e0221866. doi: 10.1371/journal.pone.0221866.
21. Li X, Liu ZL, Wu YT et al. Status of lipid and lipoprotein in female breast cancer patients at initial diagnosis and during chemotherapy. Lipids Health Dis 2018; 17 (1): 91. doi: 10.1186/s12944-018-0745-1.
22. Ma Y, Lv M, Yuan P et al. Dyslipidemia is associated with a poor prognosis of breast cancer in patients receiving neoadjuvant chemotherapy. BMC Cancer 2023; 23 (1): 208. doi: 10.1186/s12885-023-10683-y.
23. Yan XN, Jin JL, Hong LF et al. Lipoprotein (a) is associated with the presence and severity of new-onset coronary artery disease in postmenopausal women. J Womens Health (Larchmt) 2020; 29 (4): 503–510. doi: 10.1089/jwh.2019.7773.
24. Saarto T, Blomqvist C, Ehnholm C et al. Effects of chemotherapy-induced castration on serum lipids and apoproteins in premenopausal women with node-positive breast cancer. J Clin Endocrinol Metab 1996; 81 (12): 4453–4457. doi: 10.1210/jcem.81.12.8954058.
25. Qu F, Chen R, Peng Y et al. Assessment of the predictive role of serum lipid profiles in breast cancer patients receiving neoadjuvant chemotherapy. J Breast Cancer 2020; 23 (3): 246–258. doi: 10.4048/jbc.2020.23.e32.
26. Faur IF, Dobrescu A, Clim IA et al. The predictive role of serum lipid levels, p53 and ki-67, according to molecular subtypes in breast cancer: a randomized clinical study. Int J Mol Sci 2024; 25 (7): 3911. doi: 10.3390/ijms25073911.
Štítky
Paediatric clinical oncology Surgery Clinical oncologyČlánok vyšiel v časopise
Clinical Oncology
2024 Číslo 5
- Metamizole at a Glance and in Practice – Effective Non-Opioid Analgesic for All Ages
- Metamizole vs. Tramadol in Postoperative Analgesia
- Spasmolytic Effect of Metamizole
- Possibilities of Using Metamizole in the Treatment of Acute Primary Headaches
- Current Insights into the Antispasmodic and Analgesic Effects of Metamizole on the Gastrointestinal Tract
Najčítanejšie v tomto čísle
- Treatment of retroperitoneal fibrosis with rituximab, cyclophosphamide and dexamethasone, followed by rituximab and dexamethasone maintenance, achieved disappearance of pathological PET accumulation of FDG and regression of fibrotic masses after 4 months of therapy and the patient is still in complete remission after 3 years. A case report and iteraure review.
- Gemcitabine/nab-paclitaxel in first line treatment of advanced pancreatic cancer – head-to-head comparison with the mFOLFIRINOX regimen
- The guidelines for clinical practice for carriers of germline mutations in the Lynch syndrome predisposition genes MLH1, MSH2, MSH6, PMS2 and large deletions of EPCAM (4.2024)
- Viral pneumonia in a patient treated with pembrolizumab – similarity with immune-related pneumonitis