The Mechanisms of Neurodegeneration in Parkinson’s Disease
Authors:
D. Petrleničová; K. Gmitterová; J. Benetin
Authors‘ workplace:
II. neurologická klinika LF UK a FNsP Bratislava
Published in:
Cesk Slov Neurol N 2010; 73/106(6): 645-649
Category:
Review Article
Overview
Parkinson’s disease is the most common neurodegenerative disorder, with serious socio-economic consequences. At present the disorder appears incurable, but well-timed diagnostics and appropriate therapy can improve the quality of life for those who suffer from it. Recent research appears to support a hypothesis that oxidative damage and mitochondrial dysfunction may play a primary role in the pathogenesis of PD. Further investigation of the mechanisms implicated in the complex process of neurodegeneration may result in the possibility of identifying individuals at risk and presymptomatic patients, and also determining proper therapeutic targets and subsequent neuroprotective treatments.
Key words:
Parkinson’s disease – neurodegeneration – oxidative damage – mitochondrial dysfunction – neuroprotective treatment
Sources
1. Sarkar KP. Degeneration and death of neurons in adult neurodegenerative diseases. Current Science 2005; 89(5): 764–773.
2. Braak H, Del Tredici K, Bratzke H, Hamm Clement J, Sandmann-Keil D, Rub U. Staging of intracerebral inclusion body pathology associated with idiopathic Parkinson’s disease (preclinical and clinical stages). J Neurol 2002; 249 (Suppl 3): 1–5.
3. Giasson BI, Duda JE, Murray IV, Chen Q, Souza JM, Hurtig HI et al. Oxidative damage linked to neurodegeneration by selective alpha-synuklein nitration in synukleopathy lesions. Science 2000; 290(5493): 985–989.
4. Mezey E, Dehjia AM, Harta G, Tresser N, Suchy SF, Nussbaum RL et al. Alpha synuclein is present in Lewy bodies in sporadic Parkinson’s disease. Mol Psychiatry 1999; 3(6): 4–197.
5. Zhou W, Hurlbert MS, Schaack J, Prasad KN, Freed CR. Overexpression of human alpha-synuclein causes dopamine neuron death in rat primary culture and immortalized mesencephalon-derived cells. Brain Res 2000; 866(1–2): 33–43.
6. Lee M, Hyun D, Halliwell B, Jenner P. Effect of the overexpression of wild-type or mutant alpha-synuclein on cell susceptibility to insult. J Neurochem 2001; 76(4): 998–1009.
7. Wetzel BE, Schwarzenbacher R, Lipton SA. Molecular pathways to eurodegeneration. Nat Med 2004; 10 (Suppl): S2–S9.
8. Goldberg AL. Protein degradation and protection against misfolded or damaged proteins. Nature 2003, 426(6968): 895–899.
9. Olanow CW. The pathogenesis of cell death in Parkinson’s disease – 2007. Mov disord 2007; 22 (Suppl 17): S335–S342.
10. Mc Naught KS, Belizaire R, Isacson O, Jenner P, Olanow CW. Altered proteosomal function in sporadic Parkinson’s disease. Exp Neurol 2003; 179(1): 38–46.
11. Fukui H, Moraes CT. The mitochondrial impairment, oxidative stress and neurodegeneration conection: reality or just attractive hypothesis? Trends Neurosci 2008; 31(5): 251–256.
12. Maruszak A, Gaweda-Walerych K, Sołtyszewski I, Zekanovsky C. Mitochondrial DNA in pathogenesis of Alzheimer’s and Parkinson’s disease. Acta Neurobiol Exp (Wars) 2006; 66: 153–176.
13. Bender A, Krishnan KJ, Morris CM, Taylor GA, Reeve AK, Perry RH et al. High levels of mitochondrial DNA deletions in substancia nigra neurons in aging and Parkinson’s disease. Nat Genet 2006; 38(5): 515–517.
14. Beal MF. Mitochondria take center stage in aging and neurodegeneration. Ann Neurol 2005; 58(4): 495–505.
15. Sherer TB, Betabert R, Stout AK, Lund S, Baptista M, Panov AV, Cookson MR, Greenamyre JT. An in vitro model of Parkinson’s disease: linking mitochondrial impairment to altered alpha-synuclein metabolism and oxidative damage. J Neurosci 2002; 22(16): 7006–7015.
16. Mattson M. Calcium and neurodegeneration. Aging Cell 2007; 6: 337–350.
17. Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 2006; 443(7113): 787–795.
18. Gaeta A, Hider R. The crucial role of metal ions in neurodegeneration: the basis for a promising therapy. Br J Pharmacol 2005; 146(8): 1041–1059.
19. Nunomura A, Moreira PI, Takeda A, Smith MA, Perry G. Oxidative RNA damage and neurodegeneration. Curr Med Chem 2007; 14(28): 2968–2975.
20. Mariani E, Polidori MC, Cherubini A, Mecocci P. Oxidative stress in brain aging, neurodegenerative and vascular diseases: an overview. J Chromatogr B Analyt Technol Biomed Life Sci 2005; 827(1): 65–75.
21. Mancuso M, Coppede F, Migliore, Siciliano G, Murri L. Mitochodrial dysfunction, oxidative stress and neurodegeneration. J Alzheimers Dis 2006; 10: 59–73.
22. Kasai H, Crain PF, Kuchino Y, Nishimura S, Ootsuyama TH. Formation of 8-hydroxyguanine moiety cellular DNA by agents producing oxygen radicals and evidence for its repair. Carcinogenesis 1986; 7(11): 1849–1851.
23. Zhang, J, Perry G, Smith MA, Robertson D, Olson SJ, Graham DG, Montine TJ. Parkinson’s disease is associated with oxidative damage to cytoplasmic DNA and RNA in substantia nigra neurons. Am J Pathol 1999; 154(5): 1423–1429.
24. Wamer WG, Wei RR. In vitro photooxidation of nucleic acids by ultraviolet A radiation. Photochem Photobiol 1997; 65(3): 560–563.
25. Kikuchi A, Takeda A, Onodera H, Kimpara T, Kinya H, Sato N et al. Systemic increase of oxidative nucleid acid damage in Parkinson’s disease and multiple system atrophy. Neurobiol Dis 2002; 9(2): 244–248.
26. Migliore L, Petrozzi L, Lucetti C, Gambaccini G, Bernardini S, Scarpato R et al. Oxidative damage and cytogenetic analysis in leukocytes of Parkinson’s disease patients. Neurology 2002; 58(12): 1809–1815.
27. Bogdanov M, Matson WR, Wang L, Matson T, Saunders-Pullman R, Bressman SS et al. Metabolomic profiling to develop blood biomarkers for Parkinson’s disease. Brain 2008; 131(2): 389–396.
28. Sato S, Mizuno Y, Hattori N. Urinary 8-hydroxydeoxyguanosine levels as a biomarker for progression of Parkinson disease. Neurology 2005; 64(6): 1081–1083.
29. Wojda U, Salinska E, Kuznicki J. Calcium ions in neuronal degeneration. IUBMB Life 2008; 60(9): 575–590.
30. Surmeier DJ. Calcium, ageing, and neuronal vulnerability in Parkinson’s disease. Lancet Neurol 2007; 6(10): 933–938.
31. Berg D, Youdim BH. Role of iron in neurodegenerative disorders. Top Magn Reson Imaging 2006; 17(1): 5–17.
32. Salazar J, Mena N, Núnez MT. Iron dyshomeostasis in Parkinson’s disease. J Neural Transm Suppl 2006; 71: 205–213.
33. Martin WR, Wieler M, Gee M. Midbrain iron content in early Parkinson disease. Neurol 2008; 70(16): 1411–1417.
34. Walter U, Wittstock M, Benecke R, Dressler D. Substantia nigra echogenicity is normal in non-extrapyramidal cerebral disorders but increased in Parkinson’s disease. J Neural Trans 2002; 109(2): 191–196.
35. Berg D, Roggendorf W, Schröder U, Klein R, Tatschner T, Benz P et al. Echogenicity of the substantia nigra: association with increased iron content and marker for susceptibility to nigrostriatal injury. Arch Neurol 2002; 59(6): 999–1005.
36. Zecca L, Zucca FA, Wilms H, Sulzer D. Neuromelanin of the substantia nigra: a neuronal black hole with protective and toxic characteristics. Trends Neurosci 2003; 26(11): 578–580.
37. Gałazka-Friedman J, Friedman A. Controversies about iron in parkinsonian and control substantia nigra. Acta Neurobiol Exp (Wars) 1997; 57(3): 217–225.
38. Wilms H, Zecca L, Rosenstiel P, Sievers J, Deuschl G, Lucius R. Inflammation in Parkinson’s disease: cause and therapeutic implications. Curr Pham Des 2007; 13(18): 1925–1928.
39. McGeer PL, McGeer EG. Glial reactions in Parkinson’s disease. Mov Disord 2008; 23(4): 474–483.
40. Streit WJ, Miller K, Lopes KO, Njie E. Microglial degeneration in the aging brain-bad for neurons? Front Biosci 2008; 13: 3423–3438.
41. Annanmaki T, Muuronem A, Murros K. Low plasma uric acid level in Parkinson’s disease. Mov Disord 2007; 22(8): 1133–1137.
42. de Lau LM, Koudstaal PJ, Hofman A, Breteler MM. Serum uric acid levels and the risk of Parkinson’s disease. Ann Neurol 2005; 58(5): 797–800.
43. Nan H, Qiao Q, Dong Y, Gao W, Tang B, Qian R et al. The prevalence of hyperuricemia in a population of the coastal city of Qingdao, China. J Rheumatol 2006; 33(7): 1346–1350.
44. Annanmaki T, Pessala-Driver A, Hokkanen L, Murros K. Uric acid associates with cognition in Parkinson’s disease. Parkinsonism Relat Disord 2008; 14(7): 576–578.
45. Friedlander RM. Apoptosis and caspases in neurodegenerative diseases. N Eng J Med 2003; 384(14): 1365–1375.
46. Nair VD, McNaught K, St P, Gonzales-Maeso J, Sealfon SC, Olanow CW. p53 mediates nontranascriptional cell death in dopaminergic cells in response to proteasome inhibition. J Biol Chem 2006; 281: 39550–39560.
47. Tatton WG, Chalmers-Redman R, Brown D, Tatton N. Apoptosis in Parkinson’s disease: signals for neuronal degeneration. Ann Neurol 2003; 53 (Suppl 3): S61–S70.
48. Tatton WG, Olanow CW. Apoptosis in neurodegenerative disease: the role of mitochondria. Biochim Biophys Acta 1999; 1410(2): 195–213.
Labels
Paediatric neurology Neurosurgery NeurologyArticle was published in
Czech and Slovak Neurology and Neurosurgery
2010 Issue 6
- Memantine Eases Daily Life for Patients and Caregivers
- Metamizole at a Glance and in Practice – Effective Non-Opioid Analgesic for All Ages
- Metamizole vs. Tramadol in Postoperative Analgesia
- Advances in the Treatment of Myasthenia Gravis on the Horizon
Most read in this issue
- Spontaneous Regression of Sequestrated Lumbar Disc Herniation – Three Case Reports
- Assessment of State of Health and Capacity for Work in Post-Stroke Patients – Case Reports
- The Bristol Activities of Daily Living Scale BADLS-CZ for the Evaluation of Patients with Dementia
- Neurotransmitter Disorders in Childhood and Differential Diagnosis