Deep brain stimulation advances in neurological diseases
Authors:
Z. Košutzká 1; A. Kušnírová 1; I. Straka 1; P. Matejička 1; G. Timárová 1; M. Minár 1; M. Kľoc 2; M. Novotný 3; P. Valkovič 1,4
Authors place of work:
II. neurologická klinika, LF UK a UN Bratislava, SR
1; Neurochirurgická klinika, UN – Nemocnica svätého Michala, Bratislava, SR
2; Neurochirurgická klinika LF UK, SZU a UN Bratislava. SR
3; Ústav normálnej a patologickej, fyziológie, Centrum experimentálnej, medicíny Slovenskej akadémie vied, Bratislava, SR
4
Published in the journal:
Cesk Slov Neurol N 2022; 85(1): 24-30
Category:
Review Article
doi:
https://doi.org/10.48095/cccsnn202224
Summary
Deep brain stimulation (DBS) is an established advanced treatment option for selected neurological disorders with failed conservative therapy. Present indications of DBS are Parkinson‘s disease, various types of dystonia and essential tremor. In recent years, the DBS indication spectrum of neurological disorders has broadened with epilepsy and other more experimental indications such as chronic cluster headache and other movement disorders (Tourette’s syndrome, Huntington’s disease). Technological hardware innovations are another important step. Almost all currently manufactured neurostimulators are MRI compatible and the longevity of batteries has significantly improved (manufacturer guarantees a longevity of 13 years and the experimental data predict up to 25 years). Directional leads became a standard practice enabling the shaping of the electrical fields and minimalization of stimulation-induced side effects. Deep brain stimulation is a safe and effective therapy option for medically refractory neurological disorders and we may predict further substantial advances in this field (time-saving automatic programming, minimalization and longevity of batteries, user-friendly patient programmers).
Keywords:
deep brain stimulation – stimulation parameters – technology innovation
Zdroje
1. Zangiabadi N, Ladino LD, Sina F et al. Deep brain stimulation and drug-resistant epilepsy: a review of the literature. Front Neurol 2019; 10: 601. doi: 10.3389/fneur.2019. 00601.
2. Salanova V, Witt T, Worth R et al. Long-term efficacy and safety of thalamic stimulation for drug-resistant partial epilepsy. Neurology 2015; 84 (10): 1017–1025. doi: 10.1212/WNL.0000000000001334.
3. Casagrande SCB, Cury RG, Alho EJL et al. Deep brain stimulation in Tourette’s syndrome: evidence to date. Neuropsychiatr Dis Treat 2019; 15: 1061–1075. doi: 10.2147/NDT.S139368.
4. Testini P, Zhao C, Stead M et al. Centromedian-parafascicular complex deep brain stimulation for Tourette syndrome: a retrospective study. Mayo Clin Proc 2016; 91 (2): 218–225. doi: 10.1016/j.mayocp.2015.11.016.
5. Kaido T, Otsuki T, Kaneko Y et al. Deep brain stimulation for Tourette syndrome: a prospective pilot study in Japan. Neuromodulation 2011; 14 (2): 123–128. doi: 10.1111/j.1525-1403.2010.00324.x.
6. Marano M, Migliore S, Squitieri F et al. CM-Pf deep brain stimulation and the long term management of motor and psychiatric symptoms in a case of Tourette syndrome. J Clin Neurosci 2019; 62: 269–272. doi: 10.1016/j.jocn.2018.12.029.
7. Kefalopoulou Z, Zrinzo L, Jahanshahi M et al. Bilateral globus pallidus stimulation for severe Tourette’s syndrome: a double-blind, randomised crossover trial. Lancet Neurol 2015; 14 (6): 595–605. doi: 10.1016/S1474-4422 (15) 00008-3.
8. Viswanathan A, Jimenez-Shahed J, Carvallo JFB et al. Deep brain stimulation for Tourette syndrome: target selection. Stereotact Funct Neurosurg 2012; 90 (4): 213–224. doi: 10.1159/000337776.
9. Neuner I, Podoll K, Lenartz D et al. Deep brain stimulation in the nucleus accumbens for intractable Tourette’s syndrome: follow-up report of 36 months. Biol Psychiatry 2009; 65 (4): e5–6. doi: 10.1016/j.biopsych.2008.09.030.
10. Sachdev PS, Cannon E, Coyne TJ et al. Bilateral deep brain stimulation of the nucleus accumbens for comorbid obsessive compulsive disorder and Tourette’s syndrome. BMJ Case Rep 2012; 2012: bcr2012006579. doi: 10.1136/bcr-2012-006579.
11. Gonzalez V, Cif L, Biolsi B et al. Deep brain stimulation for Huntington’s disease: long-term results of a prospective open-label study. J Neurosurg 2014; 121 (1): 114–122. doi: 10.3171/2014.2.JNS131722.
12. Sanrey E, Macioce V, Gonzalez V et al. Does pallidal neuromodulation influence cognitive decline in Huntington’s disease? J Neurol 2021; 268 (2): 613–622. doi: 10.1007/s00415-020-10206-w.
13. Zittel S, Tadic V, Moll CKE et al. Prospective evaluation of Globus pallidus internus deep brain stimulation in Huntington’s disease. Parkinsonism Relat Disord 2018; 51: 96–100. doi: 10.1016/j.parkreldis.2018.02.030.
14. Wojtecki L, Groiss SJ, Ferrea S et al. A prospective pilot trial for pallidal deep brain stimulation in Huntington’s disease. Front Neurol 2015; 6: 177. doi: 10.3389/fneur.2015.00177.
15. Voigt AW, Gould HJ. Chronic daily headache: mechanisms and principles of management. Curr Pain Headache Rep 2016; 20 (2): 10. doi: 10.1007/s11916-016-0542-3.
16. Fontaine D, Vandersteen C, Magis D et al. Neuromodulation in cluster headache. Adv Tech Stand Neurosurg 2015; 42: 3–21. doi: 10.1007/978-3-319-09066-5_1.
17. Akram H, Miller S, Lagrata S et al. Ventral tegmental area deep brain stimulation for refractory chronic cluster headache. Neurology 2016; 86 (18): 1676–1682. doi: 10.1212/WNL.0000000000002632.
18. Frizon LA, Yamamoto EA, Nagel SJ et al. Deep brain stimulation for pain in the modern era: a systematic review. Neurosurgery 2020; 86 (2): 191–202. doi: 10.1093/neuros/nyy552.
19. Hosobuchi Y, Adams JE, Linchitz R. Pain relief by electrical stimulation of the central gray matter in humans and its reversal by naloxone. Science 1977; 197 (4299): 183–186. doi: 10.1126/science.301658.
20. Levy R, Deer TR, Henderson J. Intracranial neurostimulation for pain control: a review. Pain Physician 2010; 13 (2): 157–165.
21. Levi V, Cordella R, D‘Ammando et al. Dorsal anterior cingulate cortex (ACC) deep brain stimulation (DBS): a promising surgical option for the treatment of refractory thalamic pain syndrome (TPS). Acta Neurochir (Wien) 2019; 161 (8): 1579–1588. doi: 10.1007/s00701-019-03975-5.
22. Schuepbach WMM, Rau J, Knudsen K et al. Neurostimulation for Parkinson’s disease with early motor complications. N Engl J Med 2013; 368 (7): 610–622. doi: 10.1056/NEJMoa1205158.
23. Schuepbach WMM, Tonder L, Schnitzler A et al. Quality of life predicts outcome of deep brain stimulation in early Parkinson disease. Neurology 2019; 92 (10): e1109–e1120. doi: 10.1212/WNL.0000000000007037.
24. Isaias IU, Alterman RL, Tagliati M. Outcome predictors of pallidal stimulation in patients with primary dystonia: the role of disease duration. Brain 2008; 131 (Pt 7): 1895–1902. doi: 10.1093/brain/awn120.
25. Gubler FS, Ackermans L, Kubben PL et al. Infections in deep brain stimulation: shaving versus not shaving. Surg Neurol Int 2017; 8: 249. doi: 10.4103/sni.sni_172_17.
26. Grant R, Gruenbaum SE, Gerrard J. Anaesthesia for deep brain stimulation: a review. Curr Opin Anaesthesiol 2015; 28 (5): 505–510. doi: 10.1097/ACO.0000000000000230.
27. Krahulík D, Nevrlý M, Otruba P et al. O-arm navigated frameless and fiducial-less deep brain stimulation. Brain Sci 2020; 10 (10): 683. doi: 10.3390/brainsci10100683.
28. Aviles-Olmos I, Kefalopoulou Z, Tripoliti E et al. Long--term outcome of subthalamic nucleus deep brain stimulation for Parkinson’s disease using an MRI-guided and MRI-verified approach. J Neurol Neurosurg Psychiatry 2014; 85 (12): 1419–1425. doi: 10.1136/jnnp-2013-306907.
29. Krahulík D, Nevrlý M, Otruba P et al. Placement accuracy of deep brain stimulation electrodes using the NexFrame frameless system. Cesk Slov Neurol N 2017; 80/113 (2): 208–212. doi: 10.14735/amcsnn2017208.
30. Krauss JK, Lipsman N, Aziz T et al. Technology of deep brain stimulation: current status and future directions. Nat Rev Neurol 2021; 17 (2): 75–87. doi: 10.1038/s41582-020-00426-z.
31. Jarosiewicz B, Morrell M. The RNS system: brain-responsive neurostimulation for the treatment of epilepsy. Expert Rev Med Devices 2021; 18 (2): 129–138. doi: 10.1080/17434440.2019.1683445.
32. Bronstein JM, Tagliati M, McIntyre C et al. The rationale driving the evolution of deep brain stimulation to constant-current devices. Neuromodulation 2015; 18 (2): 85–88. doi: 10.1111/ner.12227.
33. Frankemolle AMM, Wu J, Noecker AM et al. Reversing cognitive-motor impairments in Parkinson’s disease patients using a computational modelling approach to deep brain stimulation programming. Brain 2010; 133 (Pt 3): 746–761. doi: 10.1093/brain/awp315.
34. Weiss D, Walach M, Meisner C et al. Nigral stimulation for resistant axial motor impairment in Parkinson’s disease? A randomized controlled trial. Brain 2013; 136 (Pt 7): 2098–2108. doi: 10.1093/brain/awt122.
35. Fabbri M, Natale F, Artusi CA et al. Deep brain stimulation fine-tuning in Parkinson’s disease: short pulse width effect on speech. Parkinsonism Relat Disord 2021; 87: 130–134. doi: 10.1016/j.parkreldis.2021.05.007.
36. Kroneberg D, Ewert S, Meyer A-C et al. Shorter pulse width reduces gait disturbances following deep brain stimulation for essential tremor. J Neurol Neurosurg Psychiatry 2019; 90 (9): 1046–1050. doi: 10.1136/jnnp-2018-319427.
37. Kern DS, Picillo M, Thompson JA et al. Interleaving stimulation in Parkinson’s disease, tremor, and dystonia. Stereotact Funct Neurosurg 2018; 96 (6): 379–391. doi: 10.1159/000494983.
38. Miocinovic S, Khemani P, Whiddon R et al. Outcomes, management, and potential mechanisms of interleaving deep brain stimulation settings. Parkinsonism Relat Disord 2014; 20 (12): 1434–1437. doi: 10.1016/j.parkreldis.2014.10.011.
39. Beudel M, Cagnan H, Little S. Adaptive brain stimulation for movement disorders. Prog Neurol Surg 2018; 33: 230–242. doi: 10.1159/000481107.
40. Fleming JE, Dunn E, Lowery MM. Simulation of closed-loop deep brain stimulation control schemes for suppression of pathological beta oscillations in Parkinson’s disease. Front Neurosci 2020; 14: 166. doi: 10.3389/fnins.2020.00166.
41. Kühn AA, Kempf F, Brücke C et al. High-frequency stimulation of the subthalamic nucleus suppresses oscillatory b activity in patients with Parkinson’s disease in parallel with improvement in motor performance. J Neurosci 2008; 28 (24): 6165–6173. doi: 10.1523/JNEUROSCI.0282-08.2008.
42. Giannicola G, Rosa M, Servello D et al. Subthalamic local field potentials after seven-year deep brain stimulation in Parkinson’s disease. Exp Neurol 2012; 237 (2): 312–317. doi: 10.1016/j.expneurol.2012.06.012.
43. Piña-Fuentes D, Beudel M, Little S et al. Toward adaptive deep brain stimulation for dystonia. Neurosurg Focus 2018; 45 (2): E3. doi: 10.3171/2018.5.FOCUS18155.
44. Tsang EW, Hamani C, Moro E et al. Prominent 5–18 Hz oscillations in the pallidal-thalamic circuit in secondary dystonia. Neurology 2012; 78 (5): 361–363. doi: 10.1212/WNL.0b013e318245293f.
45. Horn A. The impact of modern-day neuroimaging on the field of deep brain stimulation. Curr Opin Neurol 2019; 32 (4): 511–520. doi: 10.1097/WCO.0000000000000679.
46. Van Essen DC, Ugurbil K, Auerbach E et al. The human connectome project: a data acquisition perspective. Neuroimage 2012; 62 (4): 2222–2231. doi: 10.1016/j.neuroimage.2012.02.018.
47. Akram H, Sotiropoulos SN, Jbabdi S et al. Subthalamic deep brain stimulation sweet spots and hyperdirect cortical connectivity in Parkinson’s disease. Neuroimage 2017; 158: 332–345. doi: 10.1016/j.neuroimage.2017.07.012.
48. Horn A, Reich M, Vorwerk J et al. Connectivity predicts deep brain stimulation outcome in Parkinson disease. Ann Neurol 2017; 82 (1): 67–78. doi: 10.1002/ana.24974.
49. Elias GJB, Boutet A, Joel SE et al. Probabilistic mapping of deep brain stimulation: insights from 15 years of therapy. Ann Neurol 2021; 89 (3): 426–443. doi: 10.1002/ana.25975.
Štítky
Paediatric neurology Neurosurgery NeurologyČlánok vyšiel v časopise
Czech and Slovak Neurology and Neurosurgery
2022 Číslo 1
- Advances in the Treatment of Myasthenia Gravis on the Horizon
- Memantine Eases Daily Life for Patients and Caregivers
- Spasmolytic Effect of Metamizole
Najčítanejšie v tomto čísle
- Multiple tumefactive brain lesions as the first symptoms of demyelination
- Spontaneous intracranial hypotension
- Deep brain stimulation advances in neurological diseases
- Analytical and pre-analytical aspects of neurofilament light chain determination in biological fluids