Vaskulární koridor pro implantaci stimulační elektrody do nucleus anterior thalami – experimentální studie
Authors:
D. Hrabovský 1; M. Joukal 2; M. Baláž 3; J. Kunst 3; J. Chrastina 1
Authors place of work:
Neurochirurgická klinika LF MU a FN U sv. Anny v Brně
1; Anatomický ústav LF MU, Brno
2; I. neurologická klinika LF MU a FN u sv. Anny v Brně
3
Published in the journal:
Cesk Slov Neurol N 2023; 86(2): 140-145
Category:
Original Paper
doi:
https://doi.org/10.48095/cccsnn2023140
Summary
Aim: Stimulation of the anterior thalamic nucleus (ATN) is considered for patients with refractory epilepsy if there is no other surgical option. The target structure, the ATN, protrudes to the lateral brain ventricle as a thalamic tubercle, bordered by the thalamostriate vein laterally and the choroid plexus with the superior choroidal vein medially. The study aim was to analyze this vascular corridor for electrode implantation considering both surgical safety and possible association with stimulation outcomes. The best results are achieved when the anterior part of the ATN is stimulated. Materials and methods: The thalamic tubercle and its vascular borders were identified in dissection of both brain hemispheres of cadaveric specimens with intracranial vessel injections. The width of the vascular corridor was measured at distances of 2, 4, and 6 mm from the covering spot of the thalamostriate vein and choroid plexus or from the junction of these veins. Results: Six cadaveric specimens were measured. The median widths of the vascular corridor were 2.5–3 mm at the 2 mm, and 4–4.5 mm at the 4 mm, and 6 mm measures from the junction points, respectively. A small inconstant venous structure was observed in the dorsal part of the thalamic tubercle. After subtracting 1.3 mm (the diameter of a stimulation electrode) from the corridor width, the reserve space was 1.2–1.8 mm at the distance of 2 mm, and 2.7–3.2 mm at distances of 4 mm, and 6 mm from the junction, respectively. Conclusions: The narrow vascular corridor for electrode implantation (particularly in the anterior part of the thalamic tubercle) requires meticulous presurgical planning and precise implantation to maximize the effect of stimulation treatment while avoiding the risk of vascular conflict.
Keywords:
deep brain stimulation – Epilepsy – stereotaxic techniques – anterior thalamic nucleus – thalamostriate vein
Zdroje
1. Elliott RE, Morsi A, Kalhorn SP et al. Vagus nerve stimulation in 436 consecutive patients with treatment-resistant epilepsy: long term outcomes and predictors of response. Epilepsy Behav 2011; 20 (1): 57–63. doi: 10.1016/j.yebeh.2010.10.017.
2. Fisher R, Salanova V, Witt T et al. Electrical stimulation of the anterior nucleus of thalamus for treatment of refractory epilepsy. Epilepsia 2010; 51 (5): 899–908. doi: 10.1111/j.1528-1167.2010.02536.x.
3. Lehtimäki K, Möttönen K, Järventausta K et al. Outcome based definition of the anterior thalamic deep braion stimulation target in refractory epilepsy. Brain Stimul 2016; 9 (2): 268–275. doi: 10.1016/j.brs.2015.09.014.
4. Mullan S, Vailati G, Karasick J et al. Thalamic lesions for the control of epilepsy. A study of nine cases. Arch Neurol 1967; 16 (3): 277–285. doi: 10.1001/archneur.1967.00470210053006.
5. Upton AR, Cooper IS, Springman M et al. Supression of seizures and psychosis of limbic system origin by chronic stimulation of anterior nucleus of the thalamus. Int J Neurol 1985; 19–20: 223–230.
6. Hodaie M, Wennberg RA, Dostrovsky JO et al. Chronic anterior thalamic stimulation for intractable epilepsy. Epilepsia 2002; 43 (6): 603–608. doi: 10.1046/j.1528-1157.2002.26001.x.
7. Herrman H, Egge A, Konglund AE et al. Anterior thalamic deep brain stimulation in refractory epilepsy: a randomized, double blinded study. Acta Neurol Scand 2019; 139 (3): 294–304. doi: 10.1111/ane.13047.
8. Perez-Malagon CD, Lopez-Gonzales MA. Epilepsy and deep brain stimulation of anterior thalamic nucleus. Cureus 2021; 13 (9): e18199. doi: 10.7759/cureus.18 199.
9. Sanan A, Abdel Aziz KM, Janjua RM et al. Colored silicone injection for use in neurosurgical dissections: anatomic technical note. Neurosurgery 1999; 45 (5): 1267–1271. doi: 10.1097/00006123-199911000-00058.
10. Binder DK, Rau G, Starr PA. Haemorrhagic complications of microelectrode-guided deep brain stimulation. Stereotact Funct Neurosurg 2003; 80 (1–4): 28–31. doi: 10.1159/000075156.
11. Elias WJ, Sansur CA, Frysinger RC. Sulcal and ventricular trajectories in stereotactic surgery. J Neurosurg 2009; 110 (2): 201–207. doi: 10.3171/2008.7.17625.
12. Nowinski WL, Chua BC, Volkau I et al. Simulation and assessment of cerebrovascular damage in deep brain stimulation using a stereotactic atlas of vasculature and structure derived from multiple 3- and 7-tesla scans. J Neurosurg 2010; 113 (6): 1234–1241. doi: 10.3171/2010.2.JNS091528.
13. Möttönen T, Katisko J, Haapasalo T et al. Defining the anterior nucleus of the thalamus (ANT) as a deep brain stimulation target in refraktory epilepsy: delineation using 3T MRI and intraoperative microelectrode recording. Neuroimage Clin 2015; 7: 823–829. doi: 10.1016/j.nicl.2015.03.001.
14. Lehtimäki K, Möttönen K, Järventausta K et al. Outcome based definition of the anterior thalamic deep brain stimulation target in refractory epilepsy. Brain Stimul 2016; 9 (2): 268–275. doi: 10.1016/j.brs.2015.09. 014.
15. Wu Ch, D’Haese P-F, Pallavaram S et al. Variation in thalamic anatomy affect targeting in deep brain stimulation for epilepsy. Stereotactic Funct Neurosurg 2016; 94 (6): 387–396. doi: 10.1159/000449009.
16. Wang S, Wu DC, Fan XN et al. Mediodorsal thalamic stimulation is not protective against seizures induced by amyloid kindling in rats. Neurosci Lett 2010; 481 (2): 97–101. doi: 10.1016/j.neulet.2010.06.060.
17. Son BC, Shon YM, Kim SH et al. Technical implications in revision surgery for deep brain stimulation (DBS) of the thalamus for refractory epilepsy. J Epilepsy Res 2018; 8 (1): 12–19. doi: 10.14581/jer.18003.
18. Lehtimäki K, Coenen VA, Ferreira AG et al. The surgical approach to the anterior nucleus of thalamus in patients with refractory epilepsy: experience from the international multicenter registry (MORE). Neurosurgery 2019; 84 (1): 141–150. doi: 10.1093/neuros/nyy023.
19. Hughes EJ, Bond J, Svrckova P et al. Regional changes in thalamic shape and volume with increasing age. Neuroimage 2012; 63 (3): 1134–1142. doi: 10.1016/j.neuroimage.2012.07.043.
Štítky
Paediatric neurology Neurosurgery NeurologyČlánok vyšiel v časopise
Czech and Slovak Neurology and Neurosurgery
2023 Číslo 2
- Advances in the Treatment of Myasthenia Gravis on the Horizon
- Memantine Eases Daily Life for Patients and Caregivers
- Spasmolytic Effect of Metamizole
Najčítanejšie v tomto čísle
- Současné a budoucí terapeutické možnosti léčby generalizované formy myasthenia gravis
- Problematika posuzování invalidity po prodělané cévní mozkové příhodě
- Cenobamát v léčbě farmakorezistentní fokální epilepsie
- Standardizované a pokročilé techniky MR v diagnostice dětských nádorů mozku