Friedreich’s ataxia
Authors:
A. Zumrová; L. Šťovíčková
Authors‘ workplace:
Centrum hereditárních ataxií, Klinika dětské neurologie 2. LF UK a FN Motol, Praha
Published in:
Cesk Slov Neurol N 2024; 87(6): 385-401
Category:
Minimonography
doi:
https://doi.org/10.48095/cccsnn2022385
Overview
Friedreich’s ataxia is an autosomal recessive inherited multisystem disorder that has been in neurological awareness for more than 160 years. Its genetic basis was discovered in 1996, and since then considerable efforts have been made to elucidate the function of the product of the mutated FXN gene – frataxin. The goal is to find an optimal biological or gene therapy for this otherwise relentlessly progressive disease, which disables the carrier of the biallelic mutation within a few years of the disease onset. Currently, the first drug is available, approved specifically for Friedreich’s ataxia, while others are in various stages of clinical trials. This fact leads to a completely different view of the necessity of early diagnosis of the disease at the level of DNA analysis; it is necessary to revise the findings in patients with progressive ataxia in whom the molecular genetic diagnosis has not yet been performed, and to consider specifically the possibility of Friedreich’s ataxia also in patients with cardiomyopathy or progressive scoliosis. The article summarizes current knowledge about Friedreich’s ataxia, draws attention to the newly discovered symptoms of the disease, and provides insights into the metabolism of frataxin. In conclusion, the current directions of targeted treatment research are summarized.
Keywords:
diagnosis – Neuroanatomy – therapy – Friedreich’s ataxia – mitochondrial disease – frataxin
Sources
1. Palau F. Friedreich’s ataxia and frataxin: molecular genetics, evolution and pathogenesis (Review). Int J Mol Med 2001; 7 (6): 581–589. doi: 10.3892/ijmm.7.6.581.
2. Bertoni PD, Canziani R, Cozzi G et al. Cardiac involvement in Friedreich’s heredo-ataxia. G Ital Cardiol 1986; 16 (1): 22–29.
3. Lynch DR, Farmer JM, Wilson RB. Mortality in Friedreich’s ataxia. Tex Heart Inst J 2007; 34 (4): 502–504.
4. Hanley A, Corrigan R, Mohammad S et al. Friedreich‘s ataxia cardiomyopathy: case based discussion and management issues. Ir Med J 2010; 103 (4): 117–118.
5. Giugliano GR, Sethi PS. Friedreich’s ataxia as a cause of premature coronary artery disease. Tex Heart Inst J 2007; 34 (2): 214–217.
6. Lynch DR, Regner SR, Schadt KA et al. Management and therapy for cardiomyopathy in Friedreich’s ataxia. Expert Rev Cardiovasc Ther 2012; 10 (6): 767–777. doi: 10.1586/erc.12.57.
7. Indelicato E, Reetz K, Maier S et al. European Friedreich’s Ataxia Consortium for Translational Studies (EFACTS). Predictors of survival in Friedreich‘s ataxia: a prospective cohort study. Mov Disord 2024; 39 (3): 510–518. doi: 10.1002/mds.29687.
8. Campuzano V, Montermini L, Moltò MD et al. Friedreich’s ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 1996; 271 (5254): 1423–1427. doi: 10.1126/science.271.5254.1423.
9. Lill R, Freibert SA. Mechanisms of mitochondrial iron-sulfur protein biogenesis. Annu Rev Biochem 2020; 89: 471–499. doi: 10.1146/annurev-biochem-013118-111540.
10. Srour B, Gervason S, Monfort B et al. Mechanism of iron–sulfur cluster assembly: in the intimacy of iron and sulfur encounter. Inorganics 2020; 8 (10): 55. doi: 10.3390/inorganics8100055.
11. Monfort B, Want K, Gervason S et al. Recent advances in the elucidation of frataxin biochemical function open novel perspectives for the treatment of Friedreich’s ataxia. Front Neurosci 2022; 16: 838335. doi: 10.3389/fnins.2022.838335.
12. Doni D, Cavion F, Bortolus M et al. Human frataxin, the Friedreich ataxia deficient protein, interacts with mitochondrial respiratory chain. Cell Death Dis 2023; 14 (12): 805. doi: 10.1038/s41419-023-06320-y.
13. Friedreich N. Ueber Ataxie mit besonderer Berücksichtigung der hereditären Formen (About ataxia with special consideration of the hereditary forms). Virchows Arch Pathol Anat Physiol Klin Med 1876; 68: 145–245.
14. de Boulogne D. De l‘ataxie locomotrice progressive. Arch Gén de Méd 1868; 12: 641–652.
15. Koeppen AH, Mazurkiewicz JE. Friedreich ataxia: neuropathology revised. J Neuropathol Exp Neurol 2013; 72 (2): 78–90. doi: 10.1097/NEN.0b013e31827e5 762.
16. Friedreich N. Ueber Ataxie mit besonderer Berücksichtigung der hereditären Formen. Nachtrag (About ataxia with special consideration of the hereditary forms. Postscriptum). Virchows Arch Pathol Anat Physiol Klin Med 1877; 70: 140–152.
17. Harding AE. Friedreich’s ataxia: a clinical and genetic study of 90 families with an analysis of early diagnostic criteria and intrafamilial clustering of clinical features. Brain 1981; 104 (3): 589–620. doi: 10.1093/brain/104.3.589.
18. Brousse A. De l‘ataxie bereditaire (Maladie de Friedreich). Paris: Place de l’Odéon 1882.
19. Ladame P. Friedreich’s disease. Brain 1890; 13: 467–537.
20. Buesch K, Zhang R. A systematic review of disease prevalence, health-related quality of life, and economic outcomes associated with Friedreich‘s Ataxia. Curr Med Res Opin 2022; 38 (10): 1739–1749. doi: 10.1080/0 3007995.2022.2112870.
21. Aranca TV, Jones TM, Shaw JD et al. Emerging therapies in Friedreich’s ataxia. Neurodegener Dis Manag 2016; 6 (1): 49–65. doi: 10.2217/nmt.15.73.
22. Vankan P. Prevalence gradients of Friedreich’s ataxia and R1bhaplotype in Europe colocalize, suggesting a common Palaeolithic origin in the Franco-Cantabrian ice age refuge. J Neurochem 2013; 126 (Suppl 1): 11–20. doi: 10.1111/jnc.12215.
23. Labuda M, Labuda D, Miranda C et al. Unique origin and specific ethnic distribution of the Friedreich ataxia GAA expansion. Neurology 2000; 54 (12): 2322–2324. doi: 10.1212/wnl.54.12.2322.
24. Zhu D, Burke C, Leslie A et al. Friedreich‘s ataxia with chorea and myoclonus caused by a compound heterozygosity for a novel deletion and the trinucleotide GAA expansion. Mov Disord 2002; 17 (3): 85–89. doi: 10.1002/mds.10175.
25. Schulz JB, Boesch S, Bürk K et al. Diagnosis and treatment of Friedreich ataxia: a European perspective. Nat Rev Neurol 2009; 5 (4): 222–234. doi: 10.1038/nrneurol.2009.26.
26. Polek B. M. J. Roach2, William T et al. Burden of Friedreich’s Ataxia to the patients and healthcare systems in the United States and Canada. Front Pharmacol 2013; 4: 66. doi: 10.3389/fphar.2013.00066.
27. Williams CT, De Jesus O. Friedreich Ataxia. In: StatPearls. Treasure Island (FL): StatPearls Publishing 2024.
28. Foury F, Cazzalini O. Deletion of the yeast homologue of the human gene associated with Friedreich‘s ataxia elicits iron accumulation in mitochondria. FEBS Lett 1997; 411 (2–3): 373–377. doi: 10.1016/s0014-5793 (97) 00734-5.
29. Rötig A, de Lonlay P, Chretien D et al. Aconitase and mitochondrial iron-sulphur protein deficiency in Friedreich ataxia. Nat Genet 1997; 17 (2): 215–217. doi: 10.1038/ng1097-215.
30. Duby G, Foury F, Ramazzotti A et al. A non-essential function for yeast frataxin in iron-sulfur cluster assembly. Hum Mol Genet 2002; 11 (21): 2635–2643. doi: 10.1093/hmg/11.21.2635.
31. Lu C, Cortopassi G. Frataxin knockdown causes loss of cytoplasmic iron-sulfur cluster functions, redox alterations and induction of heme transcripts. Arch Biochem Biophys 2007; 457 (1): 111–122. doi: 10.1016/j.abb. 2006.09.010.
32. Martelli A, Puccio H. Dysregulation of cellular iron metabolism in Friedreich ataxia: from primary iron-sulfur cluster deficit to mitochondrial iron accumulation. Front Pharmacol 2014; 5: 130. doi: 10.3389/fphar.2014.00130.
33. Russi M, Martin E, D’Autréaux et al. A Drosophila model of Friedreich ataxia with CRISPR/Cas9 insertion of GAA repeats in the frataxin gene reveals in vivo protection by N-acetyl cysteine. Hum Mol Genet 2020; 29 (17): 2831–2844. doi: 10.1093/hmg/ddaa170.
34. Evans-Galea MV, Lockhart PJ, Galea CA et al. Beyond loss of frataxin: the complex molecular pathology of Friedreich ataxia. Discov Med 2014; 17 (91): 25–35.
35. Zhang J, Kasciukovic T, White MF. The CRISPR associated protein Cas4 Is a 5‘ to 3‘ DNA exonuclease with an iron-sulfur cluster. PLoS One 2012; 7 (10): e47232. doi: 10.1371/journal.pone.0047232.
36. Shi R, Hou W, Wang ZQ et al. Biogenesis of iron-sulfur clusters and their role in DNA metabolism. Front Cell Dev Biol 2021; 9: 735678. doi: 10.3389/fcell.2021. 735678.
37. Kispal G, Sipos K, Lange H et al. Biogenesis of cytosolic ribosomes requires the essential iron-sulphur protein Rli1p and mitochondria. EMBO J 2005; 24 (3): 589–598. doi: 10.1038/sj.emboj.7600541.
38. Stiban J, So M, Kaguni LS. Iron-Sulfur clusters in mitochondrial metabolism: multifaceted roles of a simple cofactor. Biochemistry (Mosc) 2016; 81 (10): 1066–1080. doi: 10.1134/S0006297916100059.
39. Bauerle MR, Schwalm EL, Booker SJ. Mechanistic diversity of radical S-adenosylmethionine (SAM) -dependent methylation. J. Biol. Chem 2015; 290 (7): 3995–4002. doi: 10.1074/jbc.R114.607044.
40. Kimura S, Suzuki T. Iron-sulfur proteins responsible for RNA modifications. Biochim Biophys Acta 2015; 1853 (6): 1272–1283. doi: 10.1016/j.bbamcr.2014.12.010.
41. Lodi R, Taylor DJ, Schapira AH. Mitochondrial dysfunction in friedreich‘s ataxia. Biol Signals Recept 2001; 10 (3–4): 263–270. doi: 10.1159/000046891.
42. Stovickova L, Hansikova H, Hanzalova J et al. Exploring mitochondrial biomarkers for Friedreich‘s ataxia: a multifaceted approach. J Neurol 2024; 271 (6): 3439–3454. doi: 10.1007/s00415-024-12223-5.
43. Armstrong JS, Khdour O, Hecht SM. Does oxidative stress contribute to the pathology of Friedreich‘s ataxia? A radical question. FASEB J 2010; 24 (7): 2152–2163. doi: 10.1096/fj.09-143222.
44. Schoenfeld RA, Napoli E, Wong A et al. Frataxin deficiency alters heme pathway transcripts and decreases mitochondrial heme metabolites in mammalian cells. Hum Mol Genet 2005; 14 (24): 3787–3799. doi: 10.1093/hmg/ddi393.
45. Stehling O, Wilbrecht C, Lill R. Mitochondrial iron-sulfur protein biogenesis and human disease. Biochimie 2014; 100: 61–77. doi: 10.1016/j.biochi.2014.01.010.
46. Cardenas-Rodriguez M, Chatzi A, Tokatlidis K. Iron-sulfur clusters: from metals through mitochondria biogenesis to disease. J Biol Inorg Chem 2018; 23 (4): 509–520. doi: 10.1007/s00775-018-1548-6.
47. Dixon SJ, Lemberg KM, Lamprecht MR et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 2012; 149 (5): 1060–1072. doi: 10.1016/ j.cell.2012.03.042.
48. Miyake S, Murai S, Kakuta S et al. Identification of the hallmarks of necroptosis and ferroptosis by transmission electron microscopy. Biochem Biophys Res Commun 2020; 527 (3): 839–844. doi: 10.1016/j.bbrc.2020.04. 127.
49. Cotticelli MG, Xia S, Lin D et al. Ferroptosis as a novel therapeutic target for Friedreich’s ataxia. J Pharmacol Exp Ther 2019; 369 (1): 47–54. doi: 10.1124/jpet.118.252759.
50. Turchi R, Faraonio R, Lettieri-Barbato D et al. An Overview of the ferroptosis hallmarks in Friedreich’s ataxia. Biomolecules 2020; 10 (11): 1489. doi: 10.3390/biom10111489.
51. Pastore A, Puccio H. Frataxin: a protein in search for a function. J Neurochem 2013; 126 (Suppl 1): 43–52. doi: 10.1111/jnc.12220.
52. Fox NG, Yu X, Feng X. et al. Structure of the human frataxin-bound iron-sulfur cluster assembly complex provides insight into its activation mechanism. Nat Commun 2019; 10 (1): 2210. doi: 10.1038/s41467-019-09989-y.
53. Ciofi-Baffoni S, Nasta V, Banci L. Protein networks in the maturation of human iron-sulfur proteins. Metallomics 2018; 10 (1): 49–72. doi: 10.1039/c7mt00269f. PMID: 29219157.
54. Alfadhel M, Nashabat M, Abu Ali Q et al. Mitochondrial iron-sulfur cluster biogenesis from molecular understanding to clinical disease. Neurosciences (Riyadh) 2017; 22 (1): 4–13. doi: 10.17712/nsj.2017.1.20160542.
55. Clark E, Johnson J, Dong YN et al. Role of frataxin protein deficiency and metabolic dysfunction in Friedreich ataxia, an autosomal recessive mitochondrial disease. Neuronal Signal 2018; 2 (4): NS20180060. doi: 10.1042/NS20180060.
56. Lynch DR, Farmer G. Mitochondrial and metabolic dysfunction in Friedreich ataxia: update on pathophysiological relevance and clinical interventions. Neuronal Signal 2021; 5 (2): NS20200093. doi: 10.1042/NS20200093.
57. Perfitt TL, Martelli A. Mitochondrial de novo assembly of iron–sulfur clusters in mammals: complex matters in a complex that matters. Inorganics 2022; 10 (3): 31. doi. 10.3390/inorganics10030031.
58. Tsai CL, Barondeau DP. Human frataxin is an allosteric switch that activates the Fe-S cluster biosynthetic complex. Biochemistry 2010; 49 (43): 9132–9139. doi: 10.1021/bi1013062.
59. Freibert SA, Boniecki MT, Stümpfig C. et al. N-terminal tyrosine of ISCU2 triggers [2Fe-2S] cluster synthesis by ISCU2 dimerization. Nat Commun 2021; 12 (1): 6902. doi: 10.1038/s41467-021-27122-w.
60. Lill R, Dutkiewicz R, Freibert SA et al. The role of mitochondria and the CIA machinery in the maturation of cytosolic and nuclear iron-sulfur proteins. Eur J Cell Biol 2015; 94 (7–9): 280–291. doi: 10.1016/j.ejcb.2015.05. 002.
61. Geoffroy G, Barbeau A, Breton G et al. Clinical description and roentgenologic evaluation of patients with Friedreich’s ataxia. Can J Neurol Sci 1976; 3 (4): 279–286. doi: 10.1017/s0317167100025464.
62. Durr A, Cossee M, Agid Y et al. Clinical and genetic abnormalities in patients with Friedreich’s ataxia. N Engl J Med 1996; 335: 1169–1175. doi: 10.1056/NEJM199610173351601.
63. Schöls L, Amoiridis G, Przuntek H et al. Friedreich’s ataxia. Revision of the phenotype according to molecular genetics. Brain 1997; 120 (Pt 12): 2131–2140. doi: 10.1093/brain/120.12.2131.
64. Filla A, De Michele G, Coppola G et al. Accuracy of clinical diagnostic criteria for Friedreich‘s ataxia. Mov Disord 2000; 15 (6): 1255–1258. doi: 10.1002/1531-8257 (200011) 15: 6<1255:: aid-mds1031>3.0.co; 2-c.
65. Delatycki MB, Williamson R, Forrest SM. Friedreich ataxia: an overview. J Med Genet 2000; 37 (1): 1–8. doi: 10.1136/jmg.37.1.1.
66. Milne SC, Corben LA, Yiu E. Gastrocnemius and soleus spasticity and muscle length in Friedreich‘s ataxia. J Clin Neurosci 2016; 29: 29–34. doi: 10.1016/j.jocn.2016.01.011.
67. Frauscher B, Hering S, Högl B et al. Restless legs syndrome in Friedreich ataxia: a polysomnographic study. Mov Disord 2011; 26 (2): 302–306. doi: 10.1002/mds.22769.
68. Milbrandt TA, Kunes JR, Karol LA. Friedreich‘s ataxia and scoliosis: the experience at two institutions. J Pediatr Orthop 2008; 28 (2): 234–238. doi: 10.1097/BPO.0b013e318164fa79.
69. Folker J, Murdoch B, Cahill Let al. Dysarthria in Friedreich‘s ataxia: a perceptual analysis. Folia Phoniatr Logop 2010; 62 (3): 97–103. doi: 10.1159/000287207.
70. Rosen KM, Folker JE, Vogel AP et al. Longitudinal change in dysarthria associated with Friedreich ataxia: a potential clinical endpoint. J Neurol 2012; 259 (11): 2471–2477. doi: 10.1007/s00415-012-6547-x.
71. Vogel AP, Wardrop MI, Folker JE et al. Voice in Friedreich ataxia. J Voice 2017; 31 (2): 243.e9–243.e19. doi: 10.1016/j.jvoice.2016.04.015.
72. Vogel AP, Brown SE, Folker JE et al. Dysphagia and swallowing-related quality of life in Friedreich ataxia. J Neurol 2014; 261 (2): 392–399. doi: 10.1007/s00415-013-7208-4.
73. Corben LA, Ho M, Copland J et al. Increased prevalence of sleep-disordered breathing in Friedreich ataxia. Neurology 2013; 81 (1): 46–51. doi: 10.1212/WNL.0b013e318297ef18.
74. Lynch DR, Farmer JM, Rochestie D et al. Contrast letter acuity as a measure of visual dysfunction in patients with Friedreich ataxia. J Neuroophthalmol 2002; 22: 270–274. doi: 10.1097/00041327-200212000-00003.
75. Rojas P, de Hoz R, Cadena M et al. Neuro-ophthalmological findings in Friedreich’s ataxia. J Pers Med 2021; 11 (8): 708. doi: 10.3390/jpm11080708.
76. Fortuna F, Barboni P, Liguori R. Visual system involvement in patients with Friedreich’s ataxia. Brain 2009; 132 (Pt 1): 116–123. doi: 10.1093/brain/awn269.
77. Seyer LA, Galetta K, Wilson J, et al. Analysis ofthe visual system in Friedreich ataxia. J Neurol 2013; 260: 2362–2369. doi: 10.1007/s00415-013-6978-z.
78. Noval S, Contreras I, Sanz-Gallego I et al. Ophthalmic features of Friedreich ataxia. Eye (Lond) 2012; 26 (2): 315–320. doi: 10.1038/eye.2011.291.
79. Dutka DP, Donnelly JE, Palka P et al. Echocardiographic characterization of cardiomyopathy in Friedreich‘s ataxia with tissue Doppler echocardiographically derived myocardial velocity gradients. Circulation 2000; 102 (11): 1276–1282. doi: 10.1161/01.cir.102.11.1276.
80. Pousset F, Legrand L, Monin M et al. A 22-year follow-up study of long-term cardiac outcome and predictors of survival in Friedreich ataxia. JAMA Neurol 2015; 72 (11): 1334–1341. doi: 10.1001/jamaneurol.2015.1855.
81. Leonard H, Forsyth R. Friedreich‘s ataxia presenting after cardiac transplantation. Arch Dis Child 2001; 84 (2): 167-8. doi: 10.1136/adc.84.2.167.
82. Lynch DR, Subramony S, Lin KY et al. Characterization of cardiac-onset initial presentation in Friedreich ataxia. Pediatr Cardiol 2024. doi: 10.1007/s00246-024-03429-5.
83. Tsou AY, Paulsen EK, Lagedrost SJ et al. Mortality in Friedreich ataxia. J Neurol Sci 2011; 307 (1–2): 46–49. doi: 10.1016/j.jns.2011.05.023.
84. McCormick A, Shinnick J, Schadt K et al. Cardiac transplantation in Friedreich Ataxia: extended follow-up. J Neurol Sci 2017; 375: 471–473. doi: 10.1016/j.jns.2017.01.027.
85. Ivak P, Zumrová A, Netuka I. Friedreich‘s ataxia and advanced heart failure: an ethical conundrum in decision-making. J Heart Lung Transplant 2016; 35 (9): 1144–1145. doi: 10.1016/j.healun.2016.06.021.
86. Friedman LS, Paulsen EK, Schadt KA et al. Pregnancy with Friedreich ataxia: a retrospective review of medical risks and psychosocial implications. Am J Obstet Gynecol 2010; 203 (3): 224.e1–224.e5. doi: 10.1016/j.ajog.2010.03.046.
87. Cnop M, Igoillo-Esteve M, Rai M et al. Central role and mechanisms of ß-cell dysfunction and death in Friedreich ataxia-associated diabetes. Ann Neurol 2012; 72 (6): 971–982. doi: 10.1002/ana.23698.
88. Cnop M, Mulder H, Igoillo-Esteve M. Diabetes in Friedreich ataxia. J Neurochem 2013; 126 (Suppl 1): 94–102. doi: 10.1111/jnc.12216.
89. Hewer RL. Study of fatal cases of Friedreich‘s ataxia. Br Med J 1968; 3 (5619): 649–652. doi: 10.1136/bmj.3.5619.649.
90. Rance G, Fava R, Baldock H et al. Speech perception ability in individuals with Friedreich ataxia. Brain 2008; 131: 2002–2012. doi: 10.1093/brain/awn104.
91. Rance G, Ryan MM, Carew P et al. Binaural speech processing in individuals with auditory neuropathy. Neuroscience 2012; 226: 227–235. doi: 10.1016/j.neuroscience.2012.08.054.
92. Igarashi M, Miller RH, Toshiaki O et al. Temporal bone findings in Friedreich‘s ataxia. ORL J Otorhinolaryngol Relat Spec 1982; 44 (3): 146–155. doi: 10.1159/000275588.
93. Koohi N, Thomas-Black G, Giunti P et al. Auditory phenotypic variability in Friedreich‘s ataxia patients. Cerebellum 2021; 20 (4): 497–508. doi: 10.1007/s12311-021-01236-9.
94. Musegante AF, Almeida PN, Monteiro RT et al. Urinary symptoms and urodynamics findings in patients with Friedreich‘s ataxia. Int Braz J Urol 2013; 39 (6): 867–874. doi: 10.1590/S1677-5538.IBJU.2013.06.14.
95. Reetz K, Dogan I, Costa AS et al. Biological and clinical characteristics of the European Friedreich’s Ataxia Consortium for Translational Studies (EFACTS) cohort: a cross-sectional analysis of baseline data. Lancet Neurol 2015; 14: 174–182. doi: 10.1016/S1474-4422 (14) 70321-7.
96. Naeije G, Schulz JB, Corben LA. The cognitive profile of Friedreich ataxia: a systematic review and meta-analysis. BMC Neurol 2022; 22 (1): 97. doi: 10.1186/s12883-022-02615-3.
97. Wollmann T, Nieto-Barco A, Montón-Alvarez F et al. Friedreich‘s ataxia: analysis of magnetic resonance imaging parameters and their correlates with cognitive and motor slowing. Rev Neurol 2004; 38 (3): 217–222.
98. Corben LA, Georgiou-Karistianis N, Fahey MC et al. Towards an understanding of cognitive function in Friedreich ataxia. Brain Res Bull 2006; 70 (3): 197–202. doi: 10.1016/j.brainresbull.2006.06.001.
99. Klopper F, Delatycki MB, Corben LA et al. The test of everyday attention reveals significant sustained volitional attention and working memory deficits in Friedreich ataxia. J Int Neuropsychol Soc 2011; 17 (1): 196–200. doi: 10.1017/S1355617710001347.
100. Mantovan MC, Martinuzzi A, Squarzanti F et al. Exploring mental status in Friedreich’s ataxia: a combined neuropsychological, behavioral and neuroimaging study. Eur J Neurol 2006; 13: 827–835. doi: 10.1111/j.1468-1331.2006.01363.x.
101. Corben LA, Klopper F, Stagnitti M et al. Measuring inhibition and cognitive flexibility in Friedreich ataxia. Cerebellum 2017; 16 (4): 757–763. doi: 10.1007/s12311-017-0848-7.
102. Alvarez V, Arnold P, Kuntzer T. Very late-onset Friedreich ataxia: later than life expectancy? J Neurol 2013; 260 (5): 1408–1409. doi: 10.1007/s00415-013-6874-6.
103. Lecocq C, Charles P, Azulay JP et al. Delayed-onset Friedreich’s ataxia revisited. Mov Disord 2016; 31: 62–69. doi: 10.1002/mds.26382.
104. Martinez AR, Moro A, Abrahao A et al. Nonneurological involvement in late-onset Friedreich ataxia (LOFA): exploring the phenotypes. Cerebellum 2017; 16 (1): 253–256. doi: 10.1007/s12311-015-0755-8.
105. Klockgether T, Zühlke C, Schulz JB et al. Friedreich‘s ataxia with retained tendon reflexes: molecular genetics, clinical neurophysiology, and magnetic resonance imaging. Neurology 1996; 46 (1): 118–121. doi: 10.1212/wnl.46.1.118.
106. Coppola G, De Michele G, Cavalcanti F et al. Why do some Friedreich’s ataxia patients retain tendon reflexes? A clinical, neurophysiological and molecular study. J Neurol 1999; 246 (5): 353–357. doi: 10.1007/s004150050362.
107. Berciano J, Mateo I, De Pablos C et al. Friedreich ataxia with minimal GAA expansion presenting as adult-onset spastic ataxia. J Neurol Sci 2002; 194 (1): 75–82. doi: 10.1016/s0022-510x (01) 00681-5.
108. McCabe DJ, Wood NW, Ryan F et al. Intrafamilial phenotypic variability in Friedreich ataxia associated with a G130V mutation in the FRDA gene. Arch Neurol 2002; 59 (2): 296–300. doi: 10.1001/archneur.59.2.296.
109. Brigatti KW, Deutsch EC, Lynch DR et al. Novel diagnostic paradigms for Friedreich ataxia. J Child Neurol 2012; 27 (9): 1146–1151. doi: 10.1177/0883073812448440.
110. Dürr A, Cossee M, Agid Y et al. Clinical and genetic abnormalities in patients with Friedreich‘s ataxia. N Engl J Med 1996; 335 (16): 1169–1175. doi: 10.1056/NEJM199610173351601.
111. Delatycki MB, Bidichandani SI. Friedreich ataxia – pathogenesis and implications for therapies. Neurobiol Dis 2019; 132: 104606. doi: 10.1016/j.nbd.2019.104606.
112. Regner SR, Wilcox NS, Friedman LS, et al. Friedreich ataxia clinical outcome measures: natural history evaluation in 410 participants. J Child Neurol 2012; 27 (9): 1152–1158. doi: 10.1177/0883073812448462.
113. Patel M, Isaacs CJ, Seyer L et al. Progression of Friedreich ataxia: quantitative characterization over 5 years. Ann Clin Transl Neurol 2016; 3 (9): 684–694. doi: 10.1002/acn3.332.
114. Herman D, Jenssen K, Burnett R, et al. Histone deacetylase inhibitors reverse gene silencing in Friedreich’s ataxia. Nat Chem Biol 2006; 2 (10): 551–558. doi: 10.1038/nchembio815.
115. Galea CA, Huq A, Lockhart PJ et al. Compound heterozygous FXN mutations and clinical outcome in Friedreich ataxia. Ann Neurol 2016; 79 (3): 485–495. doi: 10.1002/ana.24595.
116. Greeley NR, Regner S, Willi S et al. Cross-sectional analysis of glucose metabolism in Friedreich ataxia. J Neurol Sci 2014; 342 (1–2): 29–35. doi: 10.1016/j.jns.2014.04.015.
117. Filla A, De Michele G, Cavalcanti F et al. The relationship between trinucleotide (GAA) repeat length and clinical features in Friedreich ataxia. Am J Hum Genet 1996; 59 (3): 554–560.
118. De Biase I, Rasmussen A, Monticelli A et al. Somatic instabllity of the expanded GAA lriplet-repeat sequence ln Friedreich ataxia progresses throughout life. Genomics 2007; 90 (1): 1–5. doi: 10.1016/j.ygeno.2007. 04.001.
119. Long A, Napierala JS, Polak U et al. Somatic instability of the expanded GAA repeats in Friedreich’s ataxia. PLoS One 2017; 12 (12): e0189990. doi: 10.1371/journal.pone.0189990.
120. Koeppen AH, Becker AB, Qian J et al. Friedreich ataxia: hypoplasia of spinal cord and dorsal rootganglia. J Neuropathol Exp Neurol 2017; 76: 101–108. doi: 10.1093/jnen/nlw111.
121. Harding IH, Lynch DR, Koeppen AH. Central nervous system therapeutic targets in Friedreich ataxia. Hum Gene Ther 2020; 31 (23–24): 1226–1236. doi: 10.1089/hum.2020.264.
122. Quercia N, Somers GR, Halliday W et al. Friedreich ataxia presenting as sudden cardiacdeath in childhood: clinical, genetic and patho-logical correlation, with implications for genetictesting and counselling. Neuromuscul Disord 2010; 20 (5): 340–342. doi: 10.1016/j.nmd.2010.02.019.
123. Koeppen AH, Morral JA, Davis AN et al. The dorsal root ganglion in Friedreich‘s ataxia. Acta Neuropathol 2009; 118 (6): 763–776. doi: 10.1007/s00401-009-0589-x.
124. Peyronnard JM, Lapointe L, Bouchard JP et al. Nerve conduction studies and electromyography in Friedreich‘s ataxia. Can J Neurol Sci 1976; 3 (4): 313–317. doi: 10.1017/s0317167100025518.
125. Jones SJ, Baraitser M, Halliday AM. Peripheral and central somatosensory nerve conduction defects in Friedreich’s ataxia. J Neurol Neurosurg Psychiatry 1980; 43 (6): 495–503. doi: 10.1136/jnnp.43.6.495.
126. Pelosi L, Fels A, Petrillo A et al. Friedreich’s ataxia: clinical involvement and evoked potentials. Acta Neurol Scand 1984; 70 (5): 360–368. doi: 10.1111/j.1600-0404.1984.tb00837.x.
127. Cruz Martinez A, Anciones B. Central motor con-duction to upper and lower limbs after magnetic stimulation of the brain and peripheral nerve abnormalities in 20 patients with Friedreich’s ataxia. Acta Neurol Scand 1992; 85: 323–326. doi: 10.1111/j.1600-0404.1992.tb04051.x.
128. Brighina F, Scalia S, Gennuso M et al. Hypo-excitability of cortical areas in patients affected by Friedreich ataxia: a TMS study. J Neurol Sci 2005; 235 (1–2): 19–22. doi: 10.1016/j.jns.2005.03.050.
129. Vanasse M, Garcia-Larrea L, Neuschwander P et al. Evoked potential studies in Friedreich’s ataxia and progressive early onset cerebellar ataxia. Can J Neurol Sci 1988; 15 (3): 292–298. doi: 10.1017/s0317167100027773.
130. Rance G, Corben L, Barker E et al. Auditory perception in individuals with Friedreich‘s ataxia. Audiol Neurootol 2010; 15 (4): 229–240. doi: 10.1159/000255341.
131. Rance G, Starr A. Pathophysiological mechanisms and functional hearing consequences of auditory neuropathy. Brain 2015; 138 (Pt 11): 3141–3158. doi: 10.1093/brain/awv270.
132. Kirkham TH, Coupland SG. An electroretinal and visual evoked potential study in Friedreich’s ataxia. Can J Neurol Sci 1981; 8 (4): 289–294. doi: 10.1017/s0317167100043407.
133. Mascalchi M, Salvi F, Piacentrini S et al. Friedreich’s ataxia: MR findings involving the cervical portion of the spinal cord. AJR Am J Roentgenol 1994; 163 (1): 187-91. doi: 10.2214/ajr.163.1.8010211.
134. Selvadurai LP, Harding IH, Corben LA et al. Cerebral abnormalities in Friedreich ataxia: A review. Neurosci Biobehav Rev 2018; 84: 394–406. doi: 10.1016/j.neubiorev.2017.08.006.
135. Pagani E, Ginestroni A, Della Nave R et al. Assessment of brain white matter fiber bundle atrophy in patients with Friedreich ataxia. Radiology 2010; 255 (3): 882–889. doi: 10.1148/radiol.10091742.
136. Ormerod IE, Harding AE, Miller DH et al. Magnetic resonance imaging in degenerative ataxic disorders. J Neurol Neurosurg Psychiatry 1994; 57 (1): 51–57. doi: 10.1136/jnnp.57.1.51.
137. Wessel K, Schroth G, Diener HC et al. Significance of MRI-confirmed atrophy of the cranial spinal cord in Friedreich‘s ataxia. Eur Arch Psychiatry Neurol Sci 1989; 238 (4): 225–230. doi: 10.1007/BF00381470.
138. Waldvogel D, van Gelderen P, Hallett M. Increased iron in the dentate nucleus of patients with Frie- dreich’s ataxia. Ann Neurol 1999; 46 (1): 123–125. doi: 10.1002/1531-8249 (199907) 46: 1<123:: aid-ana19>3.0.co; 2-h.
139. Rizzo G, Tonon C, Valentino ML et al. Brain diffusion-weighted imaging in Friedreich‘s ataxia. Mov Disord 2011; 26 (4): 705–712. doi: 10.1002/mds.23518.
140. Delatycki MB, Corben LA. Clinical features of Friedreich ataxia. J Child Neurol 2012; 27 (9): 1133–1137. doi: 10.1177/0883073812448230.
141. Corben LA, Georgiou-Karistianis N, Bradshaw JL et al. Characterising the neuropathology and neurobehavioural phenotype in Friedreich ataxia: a systematic review. Adv Exp Med Biol 2012; 769: 169–184. doi: 10.1007/978-1-4614-5434-2_11.
142. Koeppen AH. Friedreich‘s ataxia: pathology, pathogenesis, and molecular genetics. J Neurol Sci 2011; 303 (1–2): 1–12. doi: 10.1016/j.jns.2011.01.010.
143. Pandolfo M, Pastore A. The pathogenesis of Friedreich ataxia and the structure and function of frataxin. J Neurol 2009; 256 (Suppl 1): 9–17. doi: 10.1007/s00415-009-1003-2.
144. Li W, Wu B, Liu C. Quantitative susceptibility mapping of human brain reflects spatial variation in tissue composition. Neuroimage 2011; 55 (4): 1645–1656. doi: 10.1016/j.neuroimage.2010.11.088.
145. Lim IA, Faria AV, Li X, et al. Human brain atlas for automated region of interest selection in quantitative susceptibility mapping: application to determine iron content in deep gray matter structures. Neuroimage 2013; 82: 449–469. doi: 10.1016/j.neuroimage.2013.05.127.
146. Koeppen AH, Ramirez RL, Yu D et al. Friedreich‘s ataxia causes redistribution of iron, copper, and zinc in the dentate nucleus. Cerebellum 2012; 11 (4): 845–860. doi: 10.1007/s12311-012-0383-5.
147. Feldman HM, Yeatman JD, Lee ES et al. Diffusion tensor imaging: a review for pediatric researchers and clinicians. J Dev Behav Pediatr 2010; 31 (4): 346–356. doi: 10.1097/DBP.0b013e3181dcaa8b.
148. Dogan I, Romanzetti S, Didszun C et al. Structural characteristics of the central nervous system in Friedreich ataxia: an in vivo spinal cord and brain MRI study. J Neurol Neurosurg Psychiatry 2019; 90 (5): 615–617. doi: 10.1136/jnnp-2018-318422.
149. Harding IH, Chopra S, Arrigoni F et al. Brain structure and degeneration staging in Friedreich ataxia: magnetic resonance imaging volumetrics from the ENIGMA-ataxia working group. Ann Neurol 2021; 90 (4): 570–583. doi: 10.1002/ana.26200.
150. Rezende TJ, Silva CB, Yassuda CL et al. Longitudinal magnetic resonance imaging study shows progressive pyramidal and callosal damage in Friedreich’s ataxia. Mov Disord 2016; 31 (1): 70–78. doi: 10.1002/mds.26436.
151. Joers JM, Adanyeguh IM, Deelchand DK et al. Spinal cord magnetic resonance imaging and spectroscopy detect early-stage alterations and disease progression in Friedreich ataxia. Brain Commun 2022; 4 (5): fcac246. doi: 10.1093/braincomms/fcac246.
152. Santos TA, Maistro CE, Silva CB et al. MRI texture analysis reveals bulbar abnormalities in Friedreich ataxia. AJNR Am J Neuroradiol 2015; 36 (12): 2214–2218. doi: 10.3174/ajnr.A4455.
153. Adanyeguh IM, Joers JM, Deelchand DK et al. Brain MRI detects early-stage alterations and disease progression in Friedreich ataxia. Brain Commun 2023; 5 (4): fcad196. doi: 10.1093/braincomms/fcad196.
154. Cossée M, Dürr A, Schmitt M et al. Friedreich‘s ataxia: point mutations and clinical presentation of compound heterozygotes. Ann Neurol 1999; 45 (2): 200–206. doi: 10.1002/1531-8249 (199902) 45: 2<200:: aid-ana10>3.0.co; 2-u.
155. Chung BT, Chen HY, Gordon J et al. First hyperpolarized [2-13C]pyruvate MR studies of human brain metabolism. J Magn Reson 2019; 309: 106617. doi: 10.1016/j.jmr.2019.106617.
156. Ward PGD, Harding IH, Close TG et al. Longitudinal evaluation of iron concentration and atrophy in the dentate nuclei in friedreich ataxia. Mov Disord 2019; 34 (3): 335–343. doi: 10.1002/mds.27606.
157. Tai G, Corben LA, Yiu EM et al. Progress in the treatment of Friedreich ataxia. Neurol Neurochir Pol 2018; 52 (2): 129–139. doi: 10.1016/j.pjnns.2018.02. 003.
158. Marin-Valencia I, Cho SK, Rakheja D et al. Glucose metabolism via the pentose phosphate pathway, glycolysis and Krebs cycle in an orthotopic mouse model of human brain tumors. NMR Biomed 2012; 25 (10): 1177–1186. doi: 10.1002/nbm.2787.
159. Seco CJ, Fernandez IG, Verdejol IC et al. Improvements in quality of life in individuals with Friedreich’s ataxia after participation in a 5-year program of physical activity: an observational study pre-post test design, and two years follow-up. Int J Neurorehabil 2014; 1: 129. doi: 10.4172/2376-0281.1000129.
160. Miyai I, Ito M, Hattori N et al. Cerebellar ataxia rehabilitation trial in degenerative cerebellar diseases. Neurorehabil Neural Repair 2012; 26 (5): 515–522. doi: 10.1177/1545968311425918.
161. Chang YJ, Chou CC, Huang WT et al. Cycling regimen induces spinal circuitry plasticity and improves leg muscle coordination in individuals with spinocerebellar ataxia. Arch Phys Med Rehabil 2015; 96 (6): 1006–1013. doi: 10.1016/j.apmr.2015.01.021.
162. Milne SC, Corben LA, Roberts M et al. Can rehabilitation improve the health and well-being in Friedreich’s ataxia: a randomized controlled trial? Clin Rehabil 2018; 32 (5): 630–643. doi: 10.1177/0269215517736903.
163. Kobesová A. Postižení mozečkových funkcí. In: Kolář P et al. Rehabilitace v klinické praxi. Praha: Galén 2009: 356-361. ISBN 9788072626571.
164. Strawser C, Schadt K, Hauser L et al. Pharmacological therapeutics in Friedreich ataxia: the present state. Expert Rev Neurother 2017; 17 (9): 895–907. doi: 10.1080/14737175.2017.1356721.
165. Mariotti C, Solari A, Torta D et al. Idebenone treatment in Friedreich patients: one-year-long randomized placebo-controlled trial. Neurology 2003; 60 (10): 1676–1679. doi: 10.1212/01.wnl.0000055872.50364.fc.
166. Di Prospero NA, Baker A, Jeffries N et al. Neurological effects of high-dose idebenone in patients with Friedreich‘s ataxia: a randomised, placebo-controlled trial. Lancet Neurol 2007; 6 (10): 878–886. doi: 10.1016/S1474-4422 (07) 70220-X.
167. Pineda M, Arpa J, Montero R et al. Idebenone treatment in pediatric and adult patients with Friedreich ataxia: long-term follow-up. Eur J Paediatr Neurol 2008; 12 (6): 470–475. doi: 10.1016/j.ejpn.2007.11.006.
168. Lynch DR, Perlman SL, Meier T. A phase 3 double-blind, placebo-controlled trial of idebenone in Friedreich ataxia. Arch Neurol 2010; 67 (8): 941–947. doi: 10.1001/archneurol.2010.168.
169. Sorbi S, Forleo P, Fani C et al. Double-blind, crossover, placebo-controlled clinical trial with L-acetylcarnitine in patients with degenerative cerebellar ataxia. Clin Neuropharmacol 2000; 23 (2): 114–118. doi: 10.1097/00002826-200003000-00010.
170. Schöls L, Zange J, Abele M et al. L-Carnitine and creatine in Friedreich’s ataxia, A randomized, placebo-controlled crossover trial. J Neural Transm (Vienna) 2005; 112 (6): 789–796. doi: 10.1007/s00702-004-0216-x.
171. Pandolfo M, Hausmann L. Deferiprone for the treatment of Friedreich’s ataxia. J Neurochem 2013; 126 (Suppl 1): 142–146. doi: 10.1111/jnc. 12300.
172. Boddaert N, Le Quan Sang KH, Rötig A et al. Antioxidant treatment of patients with Friedreich ataxia: four year follow up. Arch Neurol 2005; 62 (4): 621–626. doi: 10.1001/archneur.62.4.621.
173. Friedreich’s Ataxia Research Alliance. Research Pipeline. [online]. Available from: https: //www.curefa.org/research/research-pipeline.
174. National Center for Advancing Translational Sciences. Inxight Drugs. Omaveloxolone. Available from: https: //drugs.ncats.io/drug/6O85FK9I0X.
175. Lynch DR, Goldsberry A, Rummey C et al. Propensity matched comparison of omaveloxolone treatment to Friedreich ataxia natural history data. Ann Clin Transl Neurol 2024; 11 (1): 4–16. doi: 10.1002/acn3.51897.
176. National Center for Advancing Translational Sciences. Inxight Drugs. Vatiquinone. Available from: https: //drugs.ncats.io/substances?q=%22Omaveloxolone%22&facet=Substance%20Form%2FPrincipal%20Form.
177. Pandolfo M, Reetz K, Darling A et al. Efficacy and safety of leriglitazone in patients with Friedreich ataxia: a phase 2 double-blind, randomized controlled trial (FRAMES). Neurol Genet 2022; 8 (6): e200034. doi: 10.1212/NXG.0000000000200034.
178. Jasoliya M, Sacca F, Sahdeo S et al. Dimethyl fumarate dosing in humans increases frataxin expression: a potential therapy for Friedreich’s ataxia. PLoS One 2019; 14 (6): e0217776. doi: 10.1371/journal.pone. 0217776.
179. Clayton R, Galas T, Scherer N et al. Safety, pharmacokinetics, and pharmacodynamics of nomlabofusp (CTI-1601) in Friedreich’s ataxia. Ann Clin Transl Neurol 2024; 11 (3): 540–553. doi: 10.1002/acn3.51971.
180. Friedreich’s ataxia News. Etravirine for Friedreich’s ataxia. Available from: https: //friedreichsataxianews.com/etravirine/.
181. Ataxia. Design Therapeutics announce results from Phase 1 FA trial, 2023. Available from: https: //www.ataxia.org.uk/research-news/design-therapeutics-announce-results-from-phase-1-fa-trial/.
182. Yaméogo P, Gérard C, Majeau N et al. Removal of the GAA repeat in the heart of a Friedreich‘s ataxia mouse model using CjCas9. Gene Ther 2023; 30 (7–8): 612–619. doi: 10.1038/s41434-023-00387-0.
183. Munoz-Zuluaga C, Gertz M, Yost-Bido M et al. Identification of safe and effective intravenous dose of AAVrh.10hFXN to treat the cardiac manifestations of Friedreich‘s ataxia. Hum Gene Ther 2023; 34 (13–14): 605–615. doi: 10.1089/hum.2023.020.
184. Payne RM. Gene therapy for Friedreich ataxia: too much, too little, or just right? Mol Ther Methods Clin Dev 2022; 25: 1–2. doi: 10.1016/j.omtm.2022.02. 008.
185. Sivakumar A, Cherqui S. Advantages and limitations of gene therapy and gene editing for Friedreich’s ataxia. Front Genome Ed 2022; 4: 903139. doi: 10.3389/fgeed.2022.903139.
186. Schmitz-Hübsch T, du Montcel ST, Baliko L et al. Scale for the assessment and rating of ataxia: development of a new clinical scale. Neurology 2006; 66: 1717–1720.
187. Porcu L, Fichera M, Nanetti L et al.; EFACTS Study Group: Longitudinal changes of SARA scale in Friedreich ataxia: Strong influence of baseline score and age at onset. Ann Clin Transl Neurol 2023; 10 (11): 2000–2012. doi: 10.1002/acn3.51886.
188. Friedreich’s Ataxia Rating Scale (FARS) and Modified FARS (mFARS). Available from: https: //www.curefa.org/wp-content/uploads/2024/03/FARS-mFARS-Administration-Instructions.pdf.
189. Richter R. Nikolaus Friedreich. In: Haymaker W, Schiller F (eds.). The founders of neurology. Springfield: Charles C Thomas 1970: 439–441.
Labels
Paediatric neurology Neurosurgery NeurologyArticle was published in
Czech and Slovak Neurology and Neurosurgery
2024 Issue 6
- Memantine Eases Daily Life for Patients and Caregivers
- Metamizole at a Glance and in Practice – Effective Non-Opioid Analgesic for All Ages
- Metamizole vs. Tramadol in Postoperative Analgesia
- Advances in the Treatment of Myasthenia Gravis on the Horizon
Most read in this issue
- Friedreich’s ataxia
- Clinicians’ adherence to low back pain guidelines in the Czech Republic is low – an exploratory cross-sectional study
- Anatomy of the recurrent artery of Heubner and ischemia of its territory after clipping of aneurysms of the anterior communicating artery
- Virtual reality in neurosurgery: development of an educational module focused on intracranial pressure sensor insertion