#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Changes in the levels of selected metabolitesin the culture medium as a possible toolfor the embryo selection in assisted reproduction


Authors: P. Drábková 1;  L. Andrlová 1;  R. Hampl 2;  R. Kanďár 1
Authors place of work: Univerzita Pardubice, Fakulta chemicko-technologická, Katedra biologických a biochemických věd, Pardubice, vedoucí katedry doc. RNDr. Z. Bílková, Ph. D. 1;  Centrum asistované reprodukce Sanus, Pardubice, vedoucí lékařka MUDr. Š. Novotná 2
Published in the journal: Ceska Gynekol 2015; 80(2): 135-139

Summary

Despite the increasing success of infertility treatment methods of assisted reproduction, it still remains a problem how to select the best embryo that has the potential for further development and implantation. At the present time, embryo selection is based especially on morphological criteria. This approach is subjective; therefore there is a trend to find another more objective and robust method for embryo selection. Embryo metabolism can be used as an indicator of viability. This non-invasive method allows observing changes in the levels of different metabolites in culture medium before and after incubation of the only one embryo. The most mentioned substances are carbohydrates and amino acids as important components of culture medium. Carbohydrates serve predominantly as energy sources, whereas amino acids are precursors of protein and nucleotides, antioxidants, osmolytes, pH regulators etc. Several methods have been proposed for evaluating of embryo metabolic profile of embryo. There are many hypotheses for embryo selection according its metabolic profile.

Keywords:
amino acids, embryo metabolism, embryo selection in IVF, carbohydrates


Zdroje

1. Baltz, JM. Connections between preimplantation embryo physiology and culture. J Assist Reprod Genet, 2013, 30, p. 1001–1007.

2. Bonilla, L., Luchini, D., Devillard, E., Hansen, PJ. Methionine requirements for the preimplantation bovine embryo. J Reprod Dev, 2010, 56, p. 527–532.

3. Botros, L., Sakkas, D., Seli, E. Metabolomics and its application for non-invasive embryo assessment in IVF. Mol Hum Reprod, 2008, 14, p. 679–690.

4. Brison, DR., Houghton, FD., Falconer, D., et al. Identification of viable embryos in IVF by non-invasive measurement of amino acid turnover. Hum Reprod, 2004, 19, p. 2319–2324.

5. Castro, W., Bueno Sánchez, JC., Piedrahita-Ochoa, C., Cadavid, AP. Modulation of murine blastocyst hatching in vitro by glutamine and tryptophan. Braz J Med Biol Res, 2011, 44, p. 748–753.

6. Chatot, CL., Ziomek, CA., Bavister, BD., et al. An improved culture medium supports development of random-bred 1-cell mouse embryos in vitro. J Reprod Fert, 1989, 86, p. 679–688.

7. Chatot, CL., Tasca, RJ., Ziomek, CA. Glutamine uptake and utilization by preimplantation mouse embryos in CZB medium.J Reprod Fert, 1990, 89, p. 335–346.

8. Devreker, F., Van den Bergh, M., Biramane, J., et al. Effects of taurine on human embryo development in vitro. Hum Reprod, 1999, 14, p. 2350–2356.

9. Dai, SJ., Xu, CL., Wang, J., et al. Effect of culture medium volume and embryo density on early mouse embryonic development: tracking the development of the individual embryo. J Assist Reprod Genet, 2012, 29, p. 617–623.

10. Dunning, KR., Cashman, K., Russell, DL., et al. Beta-oxidation is essential for mouse oocyte developmental competence and early embryo development. Biol Reprod, 2010, 83, p. 909–918.

11. Fanali, G., di Masi, A., Trezza, V., et al. Human serum albumin: from bench to bedside. Mol Aspects Med, 2012, 33, p. 209–290.

12. Gardner, DK., Hamilton, R., McCallie, B., et al. Human and mouse embryonic development, metabolism and gene expression are altered by an ammonium gradient in vitro. Reproduction, 2013, 146, p. 49–61.

13. Gardner, DK., Wale, PL. Analysis of metabolism to select viable human embryos for transfer. Fertil Steril, 2013, 99, p. 1062–1072.

14. González, IM., Martin, PM., Burdsal, C., et al. Leucine and arginine regulate trophoblast motility through mTOR-dependent and independent pathways in the preimplantation mouse embryo. Dev Biol, 2012, 361, p. 286–300.

15. Guérin, P., Ménézo, Y. Review: role of tubal environment in preimplantation embryogenesis: application to co-culture assay. Zygote, 2011, 19, p. 47–54.

16. Haggarty, P., Wood, M., Ferguson, E., et al. Fatty acid metabolism in human preimplantation embryos. Hum Reprod, 2006, 21, p. 766–773.

17. Hemmings, KE., Maruthini, D., Vyjayanthi, S., et al. Amino acid turnover by human oocytes is influenced by gamete developmental competence, patient characteristics and gonadotrophin treatment. Hum Reprod, 2013, 28, p. 1031–1044.

18. Houghton, FD., Hawkhead, JA., Humpherson, PG., et al. Non-invasive amino acid turnover predicts human embryo developmental capacity. Hum Reprod, 2002, 17, p. 999–1005.

19. Houghton, FD., Leese, HJ. Metabolism and developmental competence of the preimplantation embryo. Eur J Obstet Gynecol Reprod Biol, 2004, Suppl1, p. S92–S96.

20. Ikeda, S., Sugimoto, M., Kume, S. Importance of methionine metabolism in morula-to-blastocyst transition in bovine preimplantation embryos. J Reprod Dev, 2012, 58, p. 91–97

21. Krisher, RL., Prather, RS. A role for the Warburg effect in preimplantation embryo development: metabolic modification to support rapid cell proliferation. Mol Reprod Dev, 2012, 79, p. 311–320.

22. Leese, HJ., Baumann, CG., Brison, DR., et al. Metabolism of the viable mammalian embryo: quietness revisited. Mol Hum Reprod, 2008, 14, p. 667–672.

23. Li, XX., Lee, KB., Lee, JH., et al. Glutathione and cysteine enhance porcine preimplantation embryo development in vitro after intracytoplasmic sperm injection. Theriogenology, 2014, 81, p. 309–314.

24. Ménézo, Y., Lichtblau, I., Elder, K. New insights into human pre-implantation metabolism in vivo and in vitro. J Assist Reprod Genet, 2013, 30, p. 293–303.

25. Picton, HM., Elder, K., Houghton, FD., et al. Association between amino acid turnover and chromosome aneuploidy during human preimplantation embryo development in vitro. Mol Hum Reprod, 2010, 16, p. 557–569.

26. Popova, E., Bader, M., Krivokharchenko, A. Effect of culture conditions on viability of mouse and rat embryos developed in vitro. Genes, 2011, 2, p. 332–344.

27. Pudakalakatti, SM., Uppangala, S., D´Souza, F., et al. NMR studies of preimplantation embryo metabolism in human assisted reproductive techniques: a new biomarker for assessment of embryo implantation potential. NMR Biomed, 2013, 26, p. 20–27.

28. Redel, BK., Brown, AN., Spate, LD., et al. Glycolysis in preimplantation development is partially controlled by the Warburg effect. Mol Reprod Dev, 2012, 79, p. 262–271.

29. Richards, T., Wang, F., Liu, L., Baltz, JM. Rescue of postcompaction-stage mouse embryo development from hypertonicity by amino acid transporter substrates that may function as organic osmolytes. Biol Reprod, 2010, 82, p. 769–777.

30. Smith, DG., Sturmey, RG. Parallels between embryo and cancer cell metabolism. Biochem Soc Trans, 2013, 41, p. 664–669.

31. Sturmey, R. Symposium: innovative techniques in human embryo viability assessment. Assessing embryo viability by measurement of amino acid turnover. Reprod Biomed Online, 2008, 17, p. 486–496.

32. Sutton-McDowall, ML., Feil, D., Robker, RL., et al. Utilization of endogenous fatty acid stores for energy production in bovine preimplantation embryos. Theriogenology, 2012, 77, p. 1632–1641.

33. Swain, JE., Pool, TB. Culture media in IVF: Decisions for the laboratory. In Nagy, ZS., Varghese, AC., Agarwal, A. Practical manual of in vitro fertilization. New York: Springer, 2012, p. 79–90.

34. van der Vusse, GJ. Albumin as fatty acid transporter. Drug Metab Pharmacokinet, 2009, 24, p. 300–307.

35. Vajta, G., Korösi, T., Du, Y., et al. The Well-of-the-Well system: an efficient approach to improve embryo development. Reprod Biomed Online, 2008, 17, p. 73–81.

36. Voet, D., Voetová, JG. Biochemie. Praha: Victoria Publishing a.s., 1995, 1325 s.

37. Yamada, M., Takanashi, K., Hamatani, T., et al. A medium-chain fatty acid as an alternative energy source in mouse preimplantation development. Sci Rep, 2012, 2, p. 1–9.

38. Zander-Fox, D., Lane, M. Media composition: energy sources and metabolism. Methods Mol Biol, 2012, 912, p. 81–96.

Štítky
Paediatric gynaecology Gynaecology and obstetrics Reproduction medicine
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#