Implantation and diagnostics of endometrial receptivity
Authors:
M. Dvořan 1; J. Vodička 1; J. Dostál 1
; M. Hajdúch 2
; P. Džubák 2
; M. Pešková 1; R. Pilka 1
Authors place of work:
Porodnicko-gynekologická klinika FN a LF UP, Olomouc, přednosta prof. MUDr. R. Pilka, Ph. D.
1; Ústav molekulární a translační medicíny LF UP, Olomouc, přednosta doc. MUDr. M. Hajdúch, Ph. D.
2
Published in the journal:
Ceska Gynekol 2018; 83(4): 291-298
Category:
Summary
Objective: Literature review of endometrial receptivity in embryo implantation and its diagnostic possibilities.
Design: Literature review.
Setting: Department of Obstetrics and Gynecology, University Hospital, Faculty of Medicine, Palacky University, Olomouc; Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc.
Results: Endometrial tissue is very dynamic, undergoing cyclic proliferation, differentiation and cell transportation, especially of immune system cells under the influence of circulating estradiol and progesterone. Endometrial remodelling during embryo implantation is controlled by decidual cells senescence and effectivity of their immunologic destruction.
Endometrial receptivity can be assessed by transcriptomic profiling of endometrial biopsy using ERA system or proteomic analysis of either endometrial secretome or cervical mucus by gel electrophoresis (DIGE) or mass spectrometry (MS).
Conclusion: With respect to recent discoveries in endometrial physiology and molecular biology, clinical application of proteomic approaches in research of potential biomarkers of endometrial receptivity could be of interest.
Keywords: implantation, endometrial receptivity, proteomic analysis, secretome, cervical mucus
Zdroje
1. Beier, HM., Beier-Hellwig, K. Molecular and cellular aspects of endometrial receptivity. Hum Reprod Update, 1998, 4(5), p. 448–458.
2. Berlanga, O., Bradshaw, HB., Vilella-Mitjana, F., et al. How endometrial secretomics can help in predicting implantation. Placenta, 2011, 32 Suppl. 3, p. S271–S275.
3. Boomsma, CM., Kavelaars, A., Eijkemans, MJ., et al. Endometrial secretion analysis identifies a cytokine profile predictive of pregnancy in IVF. Hum Reprod, 2009, 24(6), p. 1427–135.
4. Brighton, PJ., Maruyama, Y., Fishwick, K., et al. Clearance of senescent decidual cells by uterine natural killer cells in cycling human endometrium. Elife, 2017, 6.
5. Cooper, MA., Fehniger, TA.,Caligiuri, MA. The biology of human natural killer-cell subsets. Trends Immunol, 2001, 22(11), p. 633–640.
6. Cornet, PB., Galant, C., Eeckhout, Y., et al. Regulation of matrix metalloproteinase-9/gelatinase B expression and activation by ovarian steroids and LEFTY-A/endometrial bleeding-associated factor in the human endometrium. J Clin Endocrinol Metab, 2005, 90(2), p. 1001–111.
7. Diaz-Gimeno, P., Horcajadas, JA., Martinez-Conejero, JA., et al. A genomic diagnostic tool for human endometrial receptivity based on the transcriptomic signature. Fertil Steril, 2011, 95(1), p. 50–60, 60 e1–15.
8. Diep, CH., Charles, NJ., Gilks, CB., et al. Progesterone receptors induce FOXO1-dependent senescence in ovarian cancer cells. Cell Cycle, 2013, 12(9), p. 1433–1449.
9. Dominguez, F., Garrido-Gomez, T., Lopez, JA., et al. Proteomic analysis of the human receptive versus non-receptive endometrium using differential in-gel electrophoresis and MALDI-MS unveils stathmin 1 and annexin A2 as differentially regulated. Hum Reprod, 2009, 24(10), p. 2607–2617.
10. Elstein, M., Pollard, AC. Proteins of cervical mucus. Nature, 1968, 219(5154), p. 612–613.
11. Gellersen, B., Brosens, JJ. Cyclic decidualization of the human endometrium in reproductive health and failure. Endocr Rev, 2014, 35(6), p. 851–905.
12. Gellersen, B., Wolf, A., Kruse, M., et al. Human endometrial stromal cell-trophoblast interactions: mutual stimulation of chemotactic migration and promigratory roles of cell surface molecules CD82 and CEACAM1. Biol Reprod, 2013, 88(3), p. 80.
13. Grande, G., Milardi, D., Vincenzoni, F., et al. Proteomic characterization of the qualitative and quantitative differences in cervical mucus composition during the menstrual cycle. Mol Biosyst, 2015, 11(6), p. 1717–1725.
14. Greening, DW., Nguyen, HP., Elgass, K., et al. Human endometrial exosomes contain hormone-specific cargo modulating trophoblast adhesive capacity: insights into endometrial-embryo interactions. Biol Reprod, 2016, 94(2), p. 38.
15. Hannan, NJ., Stephens, AN., Rainczuk, A., et al. 2D-DiGE analysis of the human endometrial secretome reveals differences between receptive and nonreceptive states in fertile and infertile women. J Proteome Res, 2010, 9(12), p. 6256–6264.
16. Hertig, AT., Rock, J., Adams, EC. A description of 34 human ova within the first 17 days of development. Am J Anat, 1956, 98(3), p. 435–493.
17. Horcajadas, JA., Riesewijk, A., Dominguez, F., et al. Determinants of endometrial receptivity. Ann N Y Acad Sci, 2004, 1034, p. 166–175.
18. Chegini, N., Rhoton-Vlasak, A., Williams, RS. Expression of matrix metalloproteinase-26 and tissue inhibitor of matrix metalloproteinase-3 and -4 in endometrium throughout the normal menstrual cycle and alteration in users of levonorgestrel implants who experience irregular uterine bleeding. Fertil Steril, 2003, 80(3), p. 564–570.
19. Chen, JI., Hannan, NJ., Mak, Y., et al. Proteomic characterization of midproliferative and midsecretory human endometrium. J Proteome Res, 2009, 8(4), p. 2032–2044.
20. Chung, HW., Lee, JY., Moon, HS., et al. Matrix metalloproteinase-2, membranous type 1 matrix metalloproteinase, and tissue inhibitor of metalloproteinase-2 expression in ectopic and eutopic endometrium. Fertil Steril, 2002, 78(4), p. 787–795.
21. Jana, SK., Banerjee, P., Mukherjee, R., et al. HOXA-11 mediated dysregulation of matrix remodeling during implantation window in women with endometriosis. J Assist Reprod Genet, 2013, 30(11), p. 1505–1512.
22. Jiang, R., Ding, L., Zhou, J., et al. Enhanced HOXA10 sumoylation inhibits embryo implantation in women with recurrent implantation failure. Cell Death Discov, 2017, 3, p. 17057.
23. Jiang, Y., Yan, G., Zhang, H., et al. Activation of matrix metalloproteinase-26 by HOXA10 promotes embryo adhesion in vitro. Biochem Biophys Res Commun, 2014, 445(3), p. 622–628.
24. Lee, DC., Hassan, SS., Romero, R., et al. Protein profiling underscores immunological functions of uterine cervical mucus plug in human pregnancy. J Proteomics, 2011, 74(6), p. 817–828.
25. Matjusaitis, M., Chin, G., Sarnoski, EA., et al. Biomarkers to identify and isolate senescent cells. Ageing Res Rev, 2016, 29, p. 1–12.
26. Murphy, G., Nagase, H. Progress in matrix metalloproteinase research. Mol Aspects Med, 2008, 29(5), p. 290–308.
27. Nagase, H., Visse, R., Murphy, G. Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res, 2006, 69(3), p. 562–573.
28. Navot, D., Scott, RT., Droesch, K., et al. The window of embryo transfer and the efficiency of human conception in vitro. Fertil Steril, 1991, 55(1), p. 114–118.
29. Nevins, JR., Potti, A. Mining gene expression profiles: expression signatures as cancer phenotypes. Nat Rev Genet, 2007, 8(8), p. 601–609.
30. O‘Sullivan, S., Medina, C., Ledwidge, M., et al. Nitric oxide-matrix metaloproteinase-9 interactions: biological and pharmacological significance – NO and MMP-9 interactions. Biochim Biophys Acta, 2014, 1843(3), p. 603–617.
31. Parmar, T., Gadkar-Sable, S., Savardekar, L., et al. Protein profiling of human endometrial tissues in the midsecretory and proliferative phases of the menstrual cycle. Fertil Steril, 2009, 92(3), p. 1091–1103.
32. Pilka, R., Noskova, V., Domanski, H., et al. Endometrial TIMP-4 mRNA is expressed in the stroma, while TIMP-4 protein accumulates in the epithelium and is released to the uterine fluid. Mol Hum Reprod, 2006, 12(8), p. 497–503.
33. Pilka, R., Whatling, C., Domanski, H., et al. Epithelial expression of matrix metalloproteinase-26 is elevated at mid-cycle in the human endometrium. Mol Hum Reprod, 2003, 9(5), p. 271–277.
34. Ponnampalam, AP., Weston, GC., Trajstman, AC., et al. Molecular classification of human endometrial cycle stages by transcriptional profiling. Mol Hum Reprod, 2004, 10(12), p. 879–893.
35. Quenby, S., Brosens, JJ. Human implantation: a tale of mutual maternal and fetal attraction. Biol Reprod, 2013, 88(3), p. 81.
36. Rajagopalan, S., Long, EO. Cellular senescence induced by CD158d reprograms natural killer cells to promote vascular remodeling. Proc Natl Acad Sci U S A, 2012, 109(50), p. 20596–20601.
37. Salker, MS., Nautiyal, J., Steel, JH., et al. Disordered IL-33/ST2 activation in decidualizing stromal cells prolongs uterine receptivity in women with recurrent pregnancy loss. PLoS One, 2012, 7(12), p. e52252.
38. Takano, M., Lu, Z., Goto, T., et al. Transcriptional cross talk between the forkhead transcription factor forkhead box O1A and the progesterone receptor coordinates cell cycle regulation and differentiation in human endometrial stromal cells. Mol Endocrinol, 2007, 21(10), p. 2334–2349.
39. Talbi, S., Hamilton, AE., Vo, KC., et al. Molecular phenotyping of human endometrium distinguishes menstrual cycle phases and underlying biological processes in normo-ovulatory women. Endocrinology, 2006, 147(3), p. 1097–1121.
40. Ulcova-Gallova, Z., Pesek, M., Chaloupka, P., et al. [Screening of endometrial NK cells in selected infertile patients First part – Methods and current results]. Ces Gynek 2017, 82(5), p. 366–371.
41. Weimar, CH., Kavelaars, A., Brosens, JJ., et al. Endometrial stromal cells of women with recurrent miscarriage fail to discriminate between high- and low-quality human embryos. PLoS One, 2012, 7(7), p. e41424.
42. Wilcox, AJ., Baird, DD., Weinberg, CR. Time of implantation of the conceptus and loss of pregnancy. N Engl J Med, 1999, 340(23), p. 1796–1799.
43. Wilkins-Port, CE., Higgins, SP., Higgins, CE., et al. Complex regulation of the pericellular proteolytic microenvironment during tumor progression and wound repair: functional interactions between the serine protease and matrix metalloproteinase cascades. Biochem Res Int, 2012, 2012, p. 454368.
44. Zhang, J., Dunk, CE., Lye, SJ. Sphingosine signalling regulates decidual NK cell angiogenic phenotype and trophoblast migration. Hum Reprod, 2013, 28(11), p. 3026–3037.
Štítky
Paediatric gynaecology Gynaecology and obstetrics Reproduction medicineČlánok vyšiel v časopise
Czech Gynaecology
2018 Číslo 4
Najčítanejšie v tomto čísle
- Late morbidity in cesarean section scar syndrome
- Implantation and diagnostics of endometrial receptivity
- Possibilities and real meaning of assessment of ovarian reserve
- Zoon vulvitis – a rare form of chronic inflammation of the vulva