#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Intrauterine Growth Retardation and Fetal Origin of Diseases at the Adult Age


Authors: J. Kytnarová 1;  B. Zlatohlávková 3;  M. Fedorová 3;  G. Malošková 3;  M. Kršek 2
Authors place of work: Klinika dětského a dorostového lékařství VFN a UK 1. LF, Praha přednosta prof. MUDr. J. Zeman, DrSc. 1;  III. interní klinika VFN a UK 1. LF, Praha přednosta prof. MUDr. Š. Svačina, DrSc., MBA 2;  Gynekologicko-porodnická klinika VFN a UK 1. LF, Praha přednosta prof. MUDr. A. Martan, DrSc. 3
Published in the journal: Čes-slov Pediat 2008; 63 (6): 320-326.
Category: Review

Summary

The reasons for fetal growth restriction are heterogeneous. It was postulated that low birthweight together with postnatal environmental factors might increase the risk for number of diseases in adulthood, i.e. hypertension, ischaemic heart disease or diabetes mellitus type 2. Pathophysiology of this relationship is not fully understood, but it is evident, that pre- and postnatal growth and subsequent risks are modulated by different metabolic changes and genetic factors. According to programming hypothesis intrauterine adaptation to disadvantageous influences leads to long-term metabolic and endocrine alterations. IGF-I, IGF-II and their binding proteins (IGFBP) system as well as certain polymorphisms in IGF-I promotor gene might be possible candidates in explaining the link between intrauterine growth retardation and some of the diseases in adulthood.

Key words:
intrauterine growth retardation, low birthweight, IGF-I, IGF-II, IGF binding proteins, IGF-I gene polymorphism


Zdroje

1. Barker, Osmond C, Kajantie E, Forsen TJ, Erricsson JG, Barker DJP. Infant growth and stroke in adult life. The Helsinki Birth Cohort Study. Stroke 2007;38: 264–270.

2. Lee Peter A, Chernausek D, Hokken-Koelega ACS, Chernichow P. International Small for Gestational Age Advisory Board Consensus Development Conference Statement: Management of Short Children Born Small for Gestational Age, April 24–October 1, 2001. Pediatrics 2003;111: 1253–1261.

3. Gardosi J. New definition of small for gestational age based on fetal growth potential. Horm. Res. 2006;65(Suppl 3): 15–18. Epub 2006 Apr 10.

4. Geremina C, Cianfarani S. Laboratory tests and measurements in children born small for gestational age (SGA). Clinica Chimica Acta 2006;364(1–2): 113–123.

5. Laskowska M, Laskowska K, Leszczynsa, Gerrelak B, Oleszcuk J. Comparative analysis of the maternal and umbilical interleukin-8 levels in normal pregnancies and in pregnancies complicated by preeklampsia with intrauterine normal growth and intrauterine growth retardation. J. Matern. Fetal Neonatal. Med. 2007;20(7): 527–532.

6. Lee HK, Park KS, Cho YM, Lee YY, Pak YK. Mitochondria-based model for fetal origin of adult disease and insulin resistence. Am. N.Y. Acad. Sci. 2005;1042: 1–18.

7. Hales CN, Barker JP. Type 2 (non-insulin-dependent) diabetes mellitus: the thrifthy phenotype hypothesis. Diabetologie 1992;35: 595–601.

8. Ravelli ACJ, van der Meulen JHP, Michels RPJ, et al. Glucose tolerance in adults after prenatal exposure to famine. Lancet 1998;351: 173–177.

9. Garofano A, Czernichow P, Breant B. In utero undernutrition impairs rat beta-cell development. Diabetologie 1997;40: 1231–1234.

10. Harding JE. The nutritional basis of the fetal origins of adult disease. Int. J. Epidemiology 2001;30: 15–23.

11. Szitanyi P, Pistulkova H, Hubaček JA, Stuchliková H, Poledne R. APOE/intrauterine undernutrition interaction and hypercholesterolemia in children. Physiol. Res. 2007;Nov 30 /Epub aheas of print/.

12. Hofman PL, Cutfield WS, Robinson EM, et al. Insulin resistance in short children with intrauterine growth retardation. J. Clin. Endocrinol. Metab. 1997;82: 402–406.

13. Hattersley AT, Tooke JE. The fetal insulin hypothesis: and alternative explanation of the association of low birth weight with diabetes and vascular disease. Lancet 1999;353: 1789–1792.

14. Cianfarani S, Germani D, Branca F. Low birth weight and adult insulin resistence: „the catch-up growth“ hypothesis. Arch. Dis. Child. 1999;81: F71–F73.

15. Woods KA, Camacho-Hubner C, Savage MO, Clark AJL. Intrauterine growth retardation and postnatal growth failure associated with deletion of the insulin-like growth factor I gene. New Engl. J. Med. 1999;335(18): 1363–1367.

16. Camacho-Hubner C, Woods KA, Clark AJ, Savage MO. Insuline-like growth factor (IGF)-I gene deletion. Rev. Endocr. Metab. Disord. 2002;3(4): 357–361.

17. Ozkan H, Aydin A, Demir N, Erci T, Buyukgebiz A. Association of IGF-I, IGFBP-1 and IGFBP-3 on intrauterine growth and early catch-up growth. Biol. Neonate 1999;76(5): 274–282.

18. Vatten LJ, Nilsen ST, Odegard RA, Romundstad PR, Austgulen R. Insulin-like growth factor I and leptin in cord plasma and infant birth size at term. Pediatrics 2002;109(6): 1131–1135.

19. Vatten LJ, Odegard RA, Nilsen ST, Salvesen KA, Austgulen R. Relationship of insulin-like growth factor-I and insulin-like growth factor binding proteins in umbilical cord plasma to preeclampsia and infant birth weight. Obstet. Gynecol. 2002;99(1): 85–90.

20. Verkauskiene R, Jaquet D, Deghmoun S, Chevenne D, Czernichow P, Levy-Marchal C. Smallness for gestational age is associated with persistent change in insulin-like growth factor-I (IGF-I) and the ratio IGF-I/IGF binding protein-3 in adulthood. J. Clin. Endocrinol. Metab. 2005;Jul 10 /Epub ahead of print/.

21. Ong KK, Elmlinger M, Jones R, Emmett P, ALSPAC Study Team, Holly J, et al. Growth hormone binding protein levels in children are associated with birth weight, postnatal weight gain, and insulin secretion. Metabolism 2007;56(10): 1412–1417.

22. Salih DA, Tripathi G, Holding C, Szestak TA, Gonzalez MI, et al. Insulin-like growth factor-binding protein 5 (IGFBP5) compromise survival, growth, muscle development, and fertility in mice. Proc. Natl. Acad. Sci. USA 2004;1001(12): 4314–4319.

23. Bienvenu G, Seurin D, Grellier P, Froment P, Baudrimont M, et al. IGFBP-6 transgenic mice: postnatal growth, brain development and reproduction abnormalities. Endocrinology. 2004; 28 /Epub ahead of print).

24. Gomez JM, Maraval FJ, Gomez N, Navarro MA, Casamitjana R, Soler J. The IGF-I system component concentrations that decrease with ageing are lower in obesity in relationship to body mass index and body fat. Growth Horm. IGF Res. 2004;14(2): 91–96.

25. Hunt KJ, Lukanova A, Rinald S, Lundin E, Norat T, et al. A potential inverse association between insulin-like growth factor I and hypertension in a cross-sectional study. Ann. Epidemiol. 2006; Jan 20 /Epub ahead of print/.

26. Kajantie E, Fall CHD, Seppala M, Koistinen R, Dunkel L, et al. Serum insulin-like growth factor (IGF)-I and IGF-binding protein-1 in elderly people: Relationships with cardiovascular risk factors, body composition, size at birth, and childhood growth. J. Clin. Endocrinol. Metab. 2003;88: 1059–1065.

27. Kalme T, Seppala M, Qiao Q, Koistinen R, Nissinen A, et al. Sex hormone-binding globulin and insulin-like growth factor-binding protein-1 as indicators of metabolic syndrome, cardiovascular risk, and mortality in elderly men. J. Clin. Endocrinol. Metab. 2005;90: 1550–1556.

28. Johnston LB, Clark AJ, Savage MO. Genetic factors contributing to birth weight. Arch. Dis. Child. Fetal. Neonatal. Ed. 2002;86(1): F2–F3.

29. Arends N, Johnston L, Hokken-Koelega A, Van Diujn C, de Ridder M, et al. Polymorphism in the IGF-I gene: Clinical relevance for short children born small for gestational age (SGA). J. Clin. Endocrinol. Metab. 2002;87(6): 2720–2724.

30. Rietveld I, Janssen JA, van Rossum EF, Houwing Duistemaat JJ, Rivadeneira F, et al. A polymorphic CA repeat in the IGF-I gene is associated with gender specific differences in body weight, but has no effect on the secular trend in body height. Clin. Endocrinol. (Oxf) 2004;61(2): 195–203.

31. Jensen RB, Chellakooty M, Vielwerth S, Vaag A, Larsen T, et al. Intrauterine growth retardation and consequences for endocrine and cardiovascular diseases in adult life: does insulin-like growth factor-I play a role? Horm. Res. 2003;60(Suppl 3): 136–148.

32. Rietveld I, Janssen AMJL, Hofman A, Pols HAP, van Duijn CM, Lamberts SWJ. A polymorphism in the IGF-I gene influences the age-related decline in circulating total IGF-I levels. Eur. J. Endocrinol. 2003;148: 171–175.

33. Vaessen N, Heutink P, Janssen JA, Witteman JCM, Testers L, et al. A polymorphism in the gene for IGF-I. Functional properties and risk for type 2 diabetes and myocardial infarction. Diabetes 2001;50: 637–642.

34. Hart LM, Fritsche A, Rietveld I, Dekker JM, Nijpels G, et al. Genetic factors and insulin secretion. Gene variants in the IGF genes. Diabetes 2004;53(Suppl 1): S26–S30.

35. Rietveld I, Ikram MK, Vingerling JR, Hofman A, Pols HAP, et al. An IGF-I gene polymorphism modifies the risk of diabetic retinopathy. Diabetes 2006;55: 2387–2391.

Štítky
Neonatology Paediatrics General practitioner for children and adolescents
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#